Abstract:
Lie group classification is performed on the generalized Korteweg-de Vries-Burgers equationut+δuxxx+g(u)ux−νuxx+γu=f(x), which occurs in many applications of physical phenomena. We show that the equation admits a four-dimensional equivalenceLie algebra. It is also shown that the principal Lie algebra consists of a single translation symmetry. Several possibleextensions of theprincipal Lie algebra are computed and their associated symmetry reductions and exact solutions are obtained. Also, one-dimensionaloptimal system of subalgebras is obtained for the case when the principal Lie algebra is extended by two symmetries.