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a b s t r a c t 

Industrial activities, urbanization and mismanagement of toxic waste, have caused global environmental degra- 
dation. Biochar has lately gained considerable recognition and popularity for remediation of contaminated soil. 
Even though it is organic in nature, biochar may need further processing in order to safely remove contaminants, 
for soil augmentation and to enhance its treatment efficiency. In this study, areas that have been under-researched 
regarding safe precautionary measures in biochar preparation, and biochar safety towards soil environment, have 
been reviewed. The review has determined that, in order for biochar to have minimal negative impact on soil 
and its microorganisms, soil type and concentration of contaminants to be treated have to be pre-determined. 
Furthermore, the groups of microorganisms that are not tolerant to long-term application of biochar have to be 
known. Biochar itself may sometimes be a source of contaminants due to its substrate or method of its prepara- 
tion, therefore prior biological tests should be done. Variations in experimental and climatic conditions have to 
be considered prior to reporting on how soil behaves when conditioned or treated with biochar. Furthermore, 
long-term field research should also be considered in order to provide different insights on biochar suitability to 
soil amelioration. Further areas of research are also identified, for holistical reporting of biochar and impact on 
the environment. 
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. Introduction 

With increase in agricultural activities, urbanization, and industrial-
zation driven by economic development and population growth, there
s enormous disposal of potentially toxic element- laden waste and ef-
uent into the environment. Coupled with disposal of toxic waste, is the
uantities ( Anake et al., 2009 ) with which they are generated. Toxic sub-
tances are also sometimes reactive and explosive even in low concen-
rations ( Ayangbenro and Babalola, 2017 ). Potentially toxic elements
PTEs) are toxic, while also conservative and persistent in the envi-
onment ( Girma, 2015 ; Ayangbenro and Babalola, 2017 ; Suman et al.,
018 ). They are not degradable and tend to linger in the environment
onger than other pollutants. They accumulate ( Ayangbenro and Ba-
alola, 2017 ) in the receiving environment and bio-magnify through
ood chains ( Adhikari et al., 2004 ), enabling them to move across from
ne compartment of the environment to the other. However, not all
otentially toxic elements bio-magnify, but those that bio-magnify in-
lude mercury. Of greatest concern is the species form in which the
TEs reach the receiving environment, which in most cases they are
io-available ( Kaasalainen and Yli-Halla, 2003 ; D’Amore et al., 2005 )
hile also toxic and jeopardizing crop production through phytotoxic
roperties ( Girma, 2015 ). 
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Soil pollution does not only impact negatively on crops produced
rom it, but also on humans who consume the crops ( He et al., 2019 ;

u et al., 2020 ). Land pollution subsequently minimizes the size of
vailable soil for crop production, and extensively pollutes air and water
hrough secondary pollution. Contaminated water bodies, on the other
and, compromise water availability, which is already threatened by cli-
atic changes and over abstraction due to population growth. The prob-

em is grave where environmental policies and laws are in existence but
re not implemented and enforced, putting at risk, humans and ecosys-
ems’ health ( Alam et al., 2003 ; Zietz et al., 2003 ). Polluted land and
ompartments of the environment that were polluted, need phytoreme-
iation in order to stop translocation of pollutants, or to bring to a halt
ecycling of PTEs through decomposition of vegetation that might have
tored pollutants in their leaves and stems. Remediation of soil and wa-
er will also minimize consumption of contaminated food and water,
hus minimizing transfer of pollutants into the various trophic levels in
ood chains. 

. Methodology 

The study engaged a systematic review of literature in order to an-
wer the research questions on impact of PTEs and biochar on soil. The
eview process took eleven months, and focussed on articles from MDPI,
lsevier, Wiley and Springer publishers ( Fig. 1 ), being the reputable pub-
ishers of interest. Furthermore, focus was on topics that were related to
ril 2022 
article under the CC BY-NC-ND license 
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Fig. 1. Flow diagram showing number of articles identified, screened and included in the Review article (Adapted from: Page et al., 2021 ). 

Table 1 

Number of articles used in the review for each topic. 

TOPIC No. of 

Articles 

Biochar effects on soil organisms 23 (27%) 
Application of biochar in soil remediation 20 (18%) 
Biochar effect on soil fertility 

Biochar effects on nutrient retention 
Biochar effects on leaching reduction 

6 
4 
4 (12%) 

Biochar and water retention/Water Holding Capacity 11 (10%) 
PTE effects in soils 9 (8%) 
PTE effects on microbial communities 8 (7%) 
Biochar effect on soil bulk density 8 (7%) 
Effect of biochar pyrolysis temperature preparation on 

contaminant removal 
Effect of biochar preparation method on & impact on 
contaminant removal 

7 (6%) 
8 (7%) 

PTE and soil toxicity 6 (5%) 
Type of biochar feedstock on its adsorption properties 4 (4%) 
How biochar age affects biochar performance 3 (3%) 
Biochar and application rate 1 (1%) 
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ffect of PTEs on the environment (soil and microbial communities), im-
act of biochar application onto the environment (soil, microorganisms,
oil fertility, nutrient retention and leaching reduction, water retention,
oil bulk density) as shown in Table 1 . Scientific literature was guided
y relevant articles’ titles, abstract and keywords from such studies, and
urther refined to that one supported by laboratory experimental results
or short and long-term studies. Bias was minimized by consideration of
ther databases. Screening method excluded articles that were not peer
eviewed. Articles that were poorly written and too broad for the scope
f this manuscript were also excluded. Furthermore, exclusion criterion
ncluded articles published before the year 2010 (for biochar) this being
he period when the biochar topic had not yet attracted broad research
2 
hat is also suitable for this manuscript. However, a few articles pub-
ished between 2000 and 2010 were researched and included for the
urposes of extracting data on PTEs. 

. Results 

The review utilized 155 articles, from which 124 were identified
s having original data, topic-related and peer-reviewed ( Table 1 ) and
hus used for the review. From the 124 screened articles, nine were ei-
her too broad for the scope of this manuscript or were poorly-written,
nd this brought the total number of articles used in this review to 115.
 majority of the articles (21%) focussed on effects of biochar on soil
icroorganisms, followed by 18% that were on application of biochar

n soil remediation, 13% on biochar effect on soil fertility, nutrient re-
ention and leaching reduction, whereas the other 10% were on water
olding capacity of biochar. The remaining articles covered effects of
TEs on soil (8%), on microbial communities (7%), biochar effect on
oil bulk density (7%), biochar preparation methods on contaminant re-
oval (6%), impact of biochar pyrolysis temperature on contaminant

emoval (6%), and PTEs and soil toxicity (5%). Ageing biochar’s effect
n its performance was covered by 3% of the articles, whereas the role
layed by type of feedstock used for biochar preparation on absorption
roperties was covered by 4% of the articles. It is worth noting that
ome articles used in this review covered more than one topic. 

. Effect of potentially toxic elements on the environment 

Toxic substances are not only a nuisance to the receiving environ-
ent, but their toxicity cuts across to other spheres of the environment.
roperties and effects of these PTEs in different environmental set-ups
soil, soil microbial communities and vegetation) are shown below. 
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Table 2 

Effects of biochar on water retention for sandy soil (fine) and coarse soil under different environmental conditions. 

Soil type climate Pyrolysis temperature Water retention Reference 

Biochar Sandy Desert N/A Repulsion Abel et al. (2013) 
∗ 
Other 

N/A High + high AWC Busscher et al. (2010) ; Basso et al. (2013) ; G łąb et al. (2016) ; Atkinson (2018) , 
∗ High Abel et al. (2013) ; Bruun et al. (2014); Baiamonte et al. (2015) 
∗∗ No connection Jeffery et al. (2015) 

N/A High High Mao et al. (2019) 
N/A Low Hydrophobic Kameyama et al. (2019) ; Li et al. (2021) 

∗ Coarse N/A N/A High Atkinson (2018) 
Hydrochar Sandy N/A N/A repulsion Abel et al. (2013) 

AWC: Available Water Content. 
∗ Conflicting for soil type. 
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.1. Potentially toxic element effects in soils 

Globally, availability of land for crop production has been drasti-
ally reduced due to pollution by PTEs. This has negative sequences on
he ever growing population since the food demand is not met, lead-
ng to starvation, malnutrition and health risks since some communi-
ies feed on contaminated food. Health risks are due to direct consump-
ion of contaminated food or indirectly through irrigation with contam-
nated water. Moreover, while producing crops on polluted soil is the
nly available option for communities with contaminated soil, their pro-
uctivity is reduced since photosynthesis is inhibited, leading towards
tunted growth that is evident by withheld leaf shoot and root devel-
pment. PTEs bind onto soil, making them available to crops grown on
olluted soil. Soil contamination by PTEs is more severe than that of
ther segments of the environment due to their recalcitrance and sub-
equent persistence in soil ( Thangavel and Subbhuraam, 2004 ). PTEs
educe soil pH, and at very low pH some plant nutrients such as mag-
esium, calcium, phosphorus and nitrogen are unavailable for plant
rowth ( Miah et al., 2005 ; Jackson et al., 2014 ). This subsequently re-
ults in high bioavailability of PTEs within such environments for plant
ptake ( McBride, 1995 ) and subsequently reduction in plant develop-
ent and death in extreme cases. 

PTE extraction from soils raises a concern regarding their mobil-
ty and transfer from abiotic to biotic sectors of the environment. Bi-
tic segments here refer to vegetation and animals that rely on soil for
roductivity and feeding, respectively, being agents of PTEs transporta-
ion through food chains. Soil structure plays a significant role in de-
ermination of toxic substances from point of pollution and dispersal
o non-polluted segments of the environment, especially groundwater.
owever, topography and other climatic factors like rain are drivers in

he transfer of pollutants into open water bodies. Microbial activity is
lso reduced since most plants and their microorganisms survive better
ithin pH range of 6 to 7.5 ( Isirimah et al., 2003 ; Miah et al., 2005 ;

ackson et al., 2014 ). 
Human populace depending on agricultural productivity from pre-

olluted soils is at the highest risk of PTE pollution. On the other
ide, PTEs are not only readily available for plants, but also affect
heir biomass development growth ( Singh et al., 2016 ) through in-
ibition of nutrient absorption and photosynthesis, genetic structure
 Nagajyoti et al., 2010 ) and soil microbial community and diversity
 Xie et al., 2016 ; Chu, 2018 ). 

.2. Potentially toxic element effects on microbial communities 

Microbial organisms are responsible for soil carbon, nitrogen, phos-
horus and sulphur recycling. Furthermore, these organisms are re-
ponsible for biochemical reactions in soil, while also sensitive to soil
ontaminants, and often used as soil quality and pollution indicators
 Chu, 2018 ). PTEs are an example of soil contaminants that alter mi-
robial community composition, their effect on enzymatic activity and
verall soil microbial activities ( Giller et al., 1998b ; Xie et al., 2016 ;
3 
hu, 2018 ). A shift in microbial population due to PTE contamina-
ion constitutes a threat to soil microbial communities and their activi-
ies ( Gülser and Erdo ğan, 2008 ; Chu, 2018 ) amongst them soil organic
atter decomposition ( Maslin and Maier, 2000 ). However, a study by
ao et al. (2003) showed that there is an increase in tolerance of some
icrobes like arbuscular mycorrhizal fungi ( Mora et al., 2005 ) to long

erm PTEs pollution. PTE tolerant microbes could be used in soil re-
ediation due to detoxification mechanisms that they have developed

 Xie et al., 2016 ). PTE uptake further takes place during enhancement
f plant biomass that would ultimately speed up PTE extraction. This is
ccomplished with utilization of plant growth promoting rhizobacteria
PGPR) ( Becerra-Castro and Prieto, 2011 ). 

. Application of biochar in soil remediation 

Biochar is produced from agricultural residuals that are organic
n nature like animal manure, woodchips ( Thornley et al., 2009 ;
hmad et al., 2014 ); and material that is non-agricultural in produc-

ion like sewage sludge. It is produced under reducing thermochemi-
al conditions by decomposition and transformation of plant material
 Meyer et al., 2011 ; Chen et al., 2020 ), under low oxygen conditions
 Lehmann and Joseph, 2012 ; Sohi, 2012 ). It is also defined as ‘a solid
aterial obtained from the thermochemical conversion of biomass in

n oxygen-limited environment’ ( IBI, 2013 ). This is an environment-
riendly soil amendment ( Lehmann and Joseph, 2012 ) and remediation
echnology (amongst others), that uses adsorption and has become pop-
lar due to high adsorption capacity (even for organic pollutants), high
pecific surface area (SSA), and high carbon content, thus increasing soil
ertility ( Shaaban et al., 2018 ; Yu et al., 2019 ), oxygen-containing func-
ional groups SFG ( Ahmad et al., 2014 ), surface chemistry and physical
nd chemical resistance ( Crini et al., 2019 ). The product is also porous
Atkinson et al., 2010) and has high cation exchange capacity (CEC).
hen applied to soil, the porous nature increases soil water retention

 Abel et al., 2013 ). However, other authors suggest otherwise, as shown
n Section 5.4 on water retention. It was suggested that biochar modi-
cation could contribute towards an increase in pore spaces, SSA and
FG ( Tan et al., 2016 ; Dai et al., 2017 ). 

Adding to the slow pyrolysis method used for biochar production,
iomass can alternately undergo hydrothermal carbonisation (HTC) uti-
izing hot compressed water ( Kambo and Dutta, 2015 ). Hydrochar has
hysicochemical properties which make it applicable at different envi-
onmental conditions. Nevertheless, notice of exchangeable usage of the
wo - biochar and hydrochar, is observed, despite different engineering
nd preparation methods used ( Dieguez-Alonso et al., 2018 ). One of the
ifferences between the two is that hydrochar has lower surface area and
icro-porosity than biochar ( Kambo and Dutta, 2015 ). Biochar has a pH

hat ranges from 7.1 to 10.5 ( Lehmann et al., 2011 ), and when added
o soil it increases the pH of acidic soil ( Van Zwieten et al., 2010 ). This
reates an enabling environment for some PTE adsorption ( Yuan et al.,
011 ; Gai et al., 2014 ). However, preparation method of biochar con-
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d  
ributes towards a change in biochar pH where hydrothermal carboniza-
ion results in biochar of low pH ( Magdziarz et al., 2020 ) 

.1. Application of biochar in soil remediation 

While biochar may be proposed as a solution to soil contaminant
eduction, its application should not be universal since some biochar
roduction led to the formation of toxicants ( Godlewska et al., 2021 )
nd contaminants like volatile organic carbons (VOCs) and nanoparti-
les, and could conversely add contaminants to soil. VOCs are largely a
esult of incomplete combustion of raw materials that produce biochar.
here is therefore a high possibility of the toxic contaminants accumu-

ation in plant tissues, and subsequent risk to human health if soil is
ntended for crop production. Emerging contaminants negatively im-
act on soil microorganisms. Some of these contaminants are bioavail-
ble ( Zheng et al., 2019 ) and pose health problems for communities
hat rely on conditioned soil for crop production. The problem is se-
ere where biochar contamination was a result of its source or raw
aterial used for its production, for example sewage sludge from non-

esidential sources. However, the levels of toxicity of such biochar can
e determined through biological tests on soil prior to bioremediation.
uch tests include seed germination and analysis of microorganisms like
arthworms ( Zheng et al., 2019 ). Further investigations and research
hould cover mechanisms with which biochar affects plant growth due
o biochar-plant nutrient linkage. 

.2. Biochar effects on soil organisms 

Microorganisms improve soil quality through processes like nutrient
ransformations and carbon cycling. Increment of biochar benefits soil in
odifying its chemical and some physical characteristics. However, se-

ection of biochar is essential since some could be toxic as a result of their
rigin ( Verheijen et al., 2009 ). High rates of biochar application to sandy
oils have been reported to decrease microbial activity in soil, while also
educing organic matter decomposition ( Brtnicky et al., 2021 ). How-
ver, in studies by Liang et al. (2008) , Grossman et al. (2010) and
ehmann et al. (2011) an increase in soil microbial community was ob-
erved through application of biochar. 

A study by Skjemstad et al. (2002) has shown limitations in uti-
ization of biochar as a source of energy for some microorganisms, but
his observation has been reproached by Kuzyakov et al. (2009) where
iochar stimulated some species of dormant soil microorganisms. How-
ver, Gul et al. (2014) have associated microorganism abundance with
ype of feedstock from which biochar originates, where manure or crop
esidue biochar was better in enhancement of microorganism abundance
han that from wood. Dai et al. (2021) reported that labile C supplies
arbohydrates to some microorganisms and increased their population
ize. Ezawa et al. (2002) and Lehmann et al. (2011) also observed that
ue to its porous nature, biochar may also be habitable to some mi-
roorganisms, thus stimulating them. Macropores are associated with
abitat provision for microorganisms ( Alkharabsheh et al., 2021 ). The
ther likelihood for a change in microbial activity and abundance after
iochar application could be availability of labile substrates and sorp-
ion of bacteria onto biochar ( Ezawa et al., 2002 ) and increase in soil
H ( Gul et al., 2014 ; Liu et al., 2020 ). Availability of labile substrates
ould be a question of the feedstock from which specific biochar has
een processed. Furthermore, abundance of other microorganisms like
moebas, bacterivorous and herbivorous nematodes was negatively im-
acted, with herbivores requiring a higher biochar addition for posi-
ive microbial abundance ( Liu et al., 2020 ). Additionally, there was no
ignificant response of soil fauna to biochar application in a study by
ee (2021) . Undoubtedly, the aspect of microorganism and biochar com-
atibility is one of the research areas that need further investigation.
aboratory studies that would address this gap should look into a vari-
tion of biochar types - produced from different feedstock at different
yrolysis temperature, and with different application rates. Biochar age
4 
hould also be considered and investigated on different microorganism
pecies, on varied soil types, and most importantly, under controlled ex-
eriments and at different environmental and climatic conditions. How-
ver, some studies have identified a link between biochar age and soil
roperties, as well as with microorganisms health. Biochar from grassy
nd woody feedstock changed their pH and became acidic, a condition
hat stabilized pH of soil amended with such biochar ( Mukherjee et al.,
014 ). 

Due to their sensitivity to a pH change brought by biochar, earth-
orms tend to respond negatively, especially when applied at high rates
 Weyers and Spokas, 2011 ) of about 10 to 20% (w/w). Not only did a
hange in pH affect earthworms, but, in the same study E. fetida species
as used, where the biochar water holding capacity led to loss in earth-
orm weight at a 10% (w/w) application rate. Furthermore, in a study
y Anyanwu et al. (2018) , biochar that was 90 days old negatively af-
ected growth of E. eugeniae earthworm species. This has shown that
ther negative impacts of biochar onto organisms could be a result of
ts toxicity from ageing, where it undergoes biological and physico-
hemical changes ( Mukherjee et al., 2014 ; Kavitha et al., 2018 ) that
ower its affinity for contaminants. 

An increase in medicinal plant biomass ( Liu et al., 2016 ) resulted
rom application of biochar made from pinewood. Furthermore, a study
y Alvarez-Campos et al. (2018) showed biomass increase of sugar-
ane plant after application of rice hull-based biochar, whereas Zea

ays biomass increased due to coconut husk biochar ( Gonzaga et al.,
018 ). However, Anyanwu et al. (2018) articulated that plant roots
nd shoot biomass respond differently to rice husk biochar application
ate, biochar age and contact time. The study showed that O. sativa

hoot biomass increased in growth for all ages of biochar, whereas its
oots did not increase for varied dosage and age or exposure time. In
he same study, S. lycopersicum species showed a decreasing shoot re-
ponse to ageing biochar. This was opposed to observations by Makoto
t al. (2010) and Noguera et al. (2010) , who showed that both rice
Noguera et al., 2010) root biomass and root length increased after addi-
ion of forest fire biochar on Gmelin larch ( Makoto et al., 2010 ). These
nstinctively show significance of biochar feedstock, crop type, appli-
ation rate and biochar age, together with growing climatic conditions
nd species variation. 

Some organisms are less tolerant to long-term application of biochar
ue to toxicity that results from its method of preparation and ageing
rocess ( Mukherjee et al., 2014 ). Further studies need to be taken re-
arding the level of organisms’ tolerance to long-term application of
iochar. Adding to these, it is imperative that sources of potentially
oxic elements, their reaction while in the environment with other sub-
tances, effects and harm that they may cause on organisms be known
 Zhao and Kaluarachchi, 2002 ), in order to ensure effective remediation.
ithout a doubt, this implies that biochar preparation method and level

f soil degradation are also issues to be looked into prior to soil amend-
ent. The latter is significant since biochar application has been found

o be more effective for degraded soil. It is thus concluded that biochar
pplication has both beneficial and detrimental impacts on soil biota
 Domene, 2016 ), and levels at which these can have lethal effects have
o be one of research issues. 

.3. Biochar effect on soil fertility, nutrient retention and leaching 

eduction 

Environmentalists and soil scientists have opted for utilization of or-
anic forms of soil fertility due to negative effects of synthetic fertilizers
 Adesemoye and Kloepper, 2009 ). Upon adsorption onto biochar sur-
ace, PTEs can be converted from inorganic to organic forms, and in
his manner, soil fertility improves ( Chen et al., 2020 ). Furthermore,
onverted forms can be biodegradable and thus pose no threat to the re-
eiving environment. This conversion facilitates bioavailability for crops
 Lahori et al., 2017 ; Wang et al., 2018 ). Other mechanisms employed
uring PTE adsorption include complexation and cation exchange. A
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ositive charge on biochar surface has also made it possible for ad-
orption of PTEs from soil ( Weiner et al., 2013 ; Ahmad et al., 2018 )
educing their mobility, a preliminary process that hinders leaching of
hese PTEs into nearby water bodies. However, biochar application still
elies on biochar preparation methods and soil type ( Yu et al., 2013 ;
hang et al., 2019 ) for efficiency. Furthermore, owing to raw mate-
ial from which it is processed, biochar may itself be a source of soil
ontaminants ( Verheijen et al., 2009 ). Some studies have shown that
iochars from animal manure, solid waste like bagasse and woodchips
 Thornley et al., 2009 ; Nanda et al., 2016 ) and domestic sewage could
e safer than those from industrial sewage. This could be due to some
TEs ( Wang and Wang, 2019 ) present in the latter. On the other hand,
ewage laden with PTEs like Cu and Zn could be an advantage for incre-
ent of soil fertility since these PTEs are micronutrients ( Wang et al.,
020 ). 

Mechanisms through which biochar improves soil fertility could
e through nutrient absorption ( Blanco-Canqui, 2019 ), which subse-
uently reduces their leaching into nearby water bodies ( Hua et al.,
009 ; Ding et al., 2010 ). However, for fertility improvement purposes,
oil of high pH ( Novak et al., 2014 ; Scott et al., 2014 ) could have its
ertility reduced, even though some researchers have associated pro-
onged nitrate residence time in plant roots with its confinement within
iochar pores. Furthermore, literature on exact mechanisms employed
o prohibit leaching, especially that of nitrates, is scant. For effective
dsorption process, the choice of raw material used for biochar produc-
ion, and other production conditions like pH, pyrolysis temperature
 Kavitha, et al., 2018 ), have to be taken into consideration. Some stud-
es have associated high pyrolysis temperature with increased biochar
urface area ( Downie et al., 2011 ; Hossain et al., 2011 ; Lu et al., 2013 ;
hen et al., 2014 ) and porosity, relating these properties with nutrient
etention. This might be due to quinones and aromatics which have a
igher potential to perform as electron acceptors ( Chintala et al., 2016 ).
igh pyrolysis temperature was further asserted to support reduced ni-

rate leaching ( Borchard et al., 2019 ), while other researchers estab-
ished that leaching is minimal even for biochar produced at pyrolysis
emperatures that are not necessarily low ( Bu et al., 2019 ; Sanford et al.,
019 ). pH determines the adsorbent’s surface charge, and extent of func-
ional group dissociation ( Salam et al., 2011 ; Yang and Cui, 2013 ). The
acropores (of > 50 nm) of biochar are a result of raw materials from
hich it originates, whereas micropores and mesopores < 2 nm and 2

o 50 nm respectively, are a result of thermochemical processes under
ts production ( Zabaniotou et al. 2008 ). It is therefore of utmost impor-
ance that raw material is selected in accordance with specific target
ollutants and nutrients to be removed from soil, or even those that
eed to stay within soil (nutrients) for its fertility. 

.4. Biochar and water retention 

Agricultural activities consume 70% of water globally. In order
o conserve water, one of the approaches is organic improvement of
oil through biochar application so that it retains more water against
osses like evaporation. However, several researchers are adamant that
iochar water retention potential relies on feedstock from which it
s derived and is selective on soil types. Regarding type of feed-
tock, Kavitha et al. (2018) showed that hydraulic properties of wood-
hip biochar were better than that derived from dairy manure. In a
tudy by Abel et al. (2013) , both biochar and hydrochar had shown
 higher potential for retention for sandy soil. The study also showed
hat with hydrochar application there was a possibility of water re-
ellence. Other studies of similar nature have reported that addition
f biochar to sandy soil increased the soil water retention and avail-
ble water capacity (AWC) ( Busscher et al., 2010 ; Basso et al., 2013 ;
 łąb et al., 2016 ; Atkinson, 2018 ), whereas Abel et al. (2013) , Bruun
t al. (2014) and Baiamonte et al. (2015) reported an increase in
ater retention only. Baiamonte et al. (2015) further suggested that
n increase in water retention is directly proportional to increase in
5 
mount of biochar applied for soil amendment. However, with re-
ard to soil type, Atkinson (2018) reported that water retention ca-
ability is closely linked to coarse soils. On the contrary, research
y Jeffery et al. (2015) suggested that there was no significant in-
rease in water retention after biochar was applied to sandy soil, even
hough there was a connection between at least 99% of the biochar’s
nternal pore spaces with the surface and hence some chances of im-
rovement in water retention. Furthermore, the same study and an-
ther by Kameyama et al. (2019) suggest that biochar produced at
igh temperatures seems to be hydrophobic. Mao et al. (2019) also re-
terated significance of high pyrolysis temperature in soil water reten-
ion. Li et al. (2021) concurred with other findings from these studies
nd reported on the hydrophobic nature of biochar, and that its further
reatment could alter it to hydrophilic. 

Moreover, the method of biochar application within soil has been
uestionable. In this regard, deep-banding method was utilized by
lackwell et al. (2009) in order to minimize loss of biochar through
ind erosion, without affecting crop yield. This method was proven

o be more appropriate than uniform top mixing for soil water reten-
ion. This study further recommended intense research to confirm that
iochar application enhances water retention. It is with such findings,
hat it is proposed that the use of different feedstock in biochar produc-
ion is tested against water retention capability for verification of these
bservations, alongside processes used to produce biochar. 

Climatic condition dynamics should also be explored, since soil water
epulsion was more pronounced due to hydrophobic nature of soil par-
icles ( Abel et al., 2013 ) for regions like deserts, or those that are facing
ater scarcity. It is still not clear whether effectiveness of biochar and
ydrochar application relies on available water capacity or pore space
ithin each soil type, variation in climatic conditions, or a combination
f all these factors. This is substantiated by Basso et al. (2013) that, it
s not only biochar pore space ( Van Zwieten et al., 2009 ) that plays a
ole in water retention of soils. Further studies could explore linkage
mongst these factors. 

Clearly soil type has to be taken into consideration in order to ascer-
ain whether biochar has an effect on soil water retention, in order to
void contradictory results. It is also important for each study to elabo-
ate on experimental design, age of biochar, climatic conditions under
hich the research was undertaken, duration of the study and all other
ariables that could have an impact on biochar efficiency. 

.5. Biochar effect on soil bulk density 

One of the properties of biochar is low bulk density (BD), which
elps decrease that of soil and improve its structure ( Pituello et al.,
018 ). Biochar lowers BD by influencing soil aggregation ( Toková
t al., 2020 ), especially for sandy loam and clay soils ( Ouyang et al.,
013 ; Soinne et al., 2014 ). Other biochar properties that decrease soil
ulk density include its active surface area and porosity, in combina-
ion with soil properties ( Toková et al., 2020 ). The study by Toková
t al. (2020) further suggests that efficiency of biochar in decreasing
oil bulk density was observed when applied together with some fer-
ilizer. Furthermore, Verheijen et al. (2019) reported on selective ef-
ciency and decrease in soil bulk density for different soil types. The
tudy revealed that lowest biochar application (about 1%) decreased
andy soil bulk density, whereas sandy loam soil was responsive after at
east 5% of biochar application. Li et al. (2019) established that the ques-
ion of biochar effectiveness in promoting soil lies in its particle size and
ate of application. The similar trend was observed by other researchers
 Abel et al., 2013 ; Koide et al., 2015 ) in terms of biochar concentra-
ion, highlighting the need for extensive research on the relationship
etween biochar particle size and soil type. However, big and small soil
ggregates are prone to water erosion, with small particles being easily
roded by wind ( Li et al., 2019 ). Furthermore, frequent application (3%)
ate leads to soil erosion ( Li et al., 2019 ) due to low water-stable aggre-
ate content and saturated hydraulic conductivity (K sat ). However, some



M. George Environmental Challenges 8 (2022) 100540 

c  

a  

t  

o  

a  

a

6

 

s  

p  

s  

l  

h  

t  

t
 

b  

s  

p  

w  

a  

b  

r  

t  

a  

s  

t  

t  

o  

g  

b  

m
 

t  

r  

i  

w  

s  

t  

u  

t  

a  

t

D

 

i  

t

R

A  

 

A  

A  

 

A  

 

A  

 

A  

A  

 

A  

 

A  

 

A  

 

A  

A  

 

B  

 

B  

 

B  

 

 

B  

 

B  

B  

 

B  

 

 

 

B  

 

B  

 

C  

 

C  

 

C  

 

 

C  

 

C  

 

D  

D  

 

D  

 

D  

 

 

 

D  

 

D  

 

 

D  

 

omplexity resulted in the same study because even though high biochar
pplication rate led to soil erosion, the effect of different biochar par-
icle size on water-stable aggregates and (K sat ) was unclear. The effect
f biochar on soil erosion progression has to be holistically researched
long with its particle size, frequency of application, and soil type to be
mended. 

. Conclusion 

The burgeoning interest of soil scientists and environmentalists on
oil remediation should consider possible risks associated with biochar
reparation methods and long-term application. There is a need to con-
ider practicality and applicability challenges of biochar application at
arge scale, since previous tests had been done on small-scale and at
igh application rates. Furthermore, remediation methods have proved
o be challenging when species forms of potentially toxic elements to be
reated are unknown. 

A majority of the reviewed studies have not addressed issues of
iochar produced from various feedstock, biochar of different age, re-
pond of roots and shoots together (for same plant), exposure time of
lants to biochar, varied soil type, and other properties of biochar like
ater holding capacity, and hence a discrepancy in their reporting. Risks
ssociated with its long-term application, even in degraded soils should
e identified and mitigation measures employed. This does not exempt
esearch from observing variations of experimental and environmen-
al (climatic) conditions when tests like water retention and other vari-
bles that are influenced by biochar application are performed, at both
mall and large-scale. The other gap in biochar application is the extent
o which it affects the environment (soil and its biota) for both short-
erm and long-term application due to type of feedstock used, method
f preparation, and soil type to be amended. This study therefore sug-
ests that a variety of experimental design and experimental variables
e brought together, together with long-term analysis at different cli-
atic conditions. 

Resulting from this review, application of biochar on soil that is in-
ended for crop production may degrade it, resulting in further risk in
elation to food security, and leaching of contaminants into water bod-
es. Biochar changes its physical, chemical and biological properties,
hen applied and re-applied. As one of the mitigation measures, it is

uggested that preliminary soil type tests be performed in order to es-
ablish response of various soil types to biochar. Even though biochar
tilization was initially chosen due to low costs, it should be noted that
here might be extra costs related to processing requirements and avail-
bility of reactors, through which there might be compromised produc-
ion as costs increase. 
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