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Abstract

This research investigates the application of Lie symmetry method to find

analytic solutions for arithmetic Asian options, which are crucial financial

derivatives for managing risk in various commodity markets. By employing a

two state partial differential equation approach, the study uses Lie symmetry

method to enhance option pricing models. The research involves finding

determining equations, infinitesimal generators, and invariant solutions, as

well as examining the influence of parameters such as volatility, interest rates,

and time on option prices.
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Chapter 1

Literature review

1.1 Introduction

Arithmetic Asian options, also known as Average options, are derivatives

whose valuation depends on the average price of an underlying asset over a

defined period (See [1, 2]). ”Arithmetic” describes the process that is em-

ployed to determine the average price. It specifically entails adding up all

of the underlying asset’s prices throughout the specified period and dividing

the result by the total number of prices. As a consequence, an average price

is calculated with equal weights for every observation[3].

Arithmetic Asian options play a vital role in managing risk in commodity

markets, particularly those influenced by commodities like crude oil, agri-

cultural products [4], and precious metals. Multinational corporations, such

as those in the food industry relying on commodities like wheat, can utilize

these options to hedge against price fluctuations, ensuring stable production

costs[5, 6].

Moreover, Arithmetic Asian options have broader implications, impacting

consumer prices and household budgets [7]. For instance, fluctuations in
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commodity prices, such as crude oil [8, 9], directly affect everyday expenses

like transportation costs. Thus, airlines can employ these options to mitigate

fuel price risks and maintain stable ticket prices. Additionally, in the realm

of precious metals like gold, these options enable investors to capitalize on

long-term price trends while mitigating short-term volatility risks[10]. Jew-

elry manufacturers also leverage Arithmetic Asian options to manage raw

material costs, ensuring consistent pricing for consumers despite fluctuating

gold prices.

In summary, Arithmetic Asian options serve as indispensable risk manage-

ment tools across various commodity markets, providing stability, predictabil-

ity, and financial security for businesses and consumers alike, thus making

their pricing important.

1.2 Background to the study

1.2.1 Lie Symmetry

Lie symmetry is a mathematical technique used to find exact solutions for

DEs by finding transformations that keep the equations unchanged. It origi-

nates from the work of Marius Sophus Lie [11, 12, 13] and Élie-Joseph Cartan

[14, 15] in the late 19th and early 20th centuries. It has found extensive ap-

plications in various fields, including physics [16, 17, 18], engineering [19, 20],

and finance [21, 22, 23, 24, 25, 26].

In the context of option pricing, Lie symmetry analysis has been effectively

applied, as demonstrated by studies such as Yue and Shen [27] on the frac-

tal bond-pricing model, and Ramoeletsi’s work [28] on the fractional Black-

Scholes option pricing model. By employing Lie symmetry methods, re-

searchers find complete Lie symmetry groups, infinitesimal generators, and
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exact invariant solutions for pricing models, indicating the versatility of Lie

symmetry method in solving complex financial mathematical problems and

potentially improving pricing accuracy in financial markets.

Moreover, Lie symmetry analysis has been extensively applied in the realm

of mathematical finance, as evidenced by Kaibe and O’Hara[29] and Kaibe’s

PhD thesis[30] from the University of Essex. They demonstrated its utility

in deriving exact invariant solutions for zero-coupon bond pricing equations,

expanding the arsenal of pricing models for interest rate derivatives. Kaibe’s

thesis further delves into the application of Lie symmetry analysis to solve

PDE associated with interest rate derivatives, providing benchmarks for test-

ing numerical methods in financial markets and addressing issues such as

negative interest rates in traditional models like the Vasicek model.

1.2.2 Financial Markets

Pricing and options are fundamental aspects of financial markets, influencing

investment decisions, risk management, and market efficiency [31, 32].

Pricing

This is the process of determining the value of a financial instrument. Tradi-

tional pricing models, such as the Capital Asset Pricing Model (CAPM)[33,

34]; developed by Sharpe [35] and Lintner [36] ,and the Arbitrage Pricing

Theory (APT) [37, 38], provides frameworks for valuing assets based on

their risk and return characteristics. However, in recent years, there has

been growing interest in alternative pricing models that incorporate addi-

tional factors and market features [39, 40, 41]. Factor-based models, such

as the Fama-French five-factor model [42] and the Carhart four-factor model

[43], consider additional factors beyond market risk, such as size, value, and

momentum, to better explain asset returns.
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Options

Options are essential financial instruments granting investors the right, with-

out the obligation, to buy (call option) or sell (put option) an underlying asset

at a predetermined price (strike price) within a specified timeframe (expira-

tion date). They serve pivotal roles in portfolio management, risk hedging,

and speculative strategies. Offering flexibility, options enable market partici-

pants to capitalize on both upward (long call) and downward (long put) price

movements in the underlying asset, while also facilitating protection against

adverse price fluctuations (short call/put) [44, 45, 46, 47].

While the majority of options fall into European or American categories,

numerous other types exist, including Barrier options, Bermudan options,

Asian options, and Lookback options, and in this project we focus on Asian

options. These derivatives have been priced using various models such as

the Black-Scholes-Merton model [48], Monte Carlo simulation [49, 50], and

Perturbation methods [51]. Here, our aim is to derive analytic solutions for

the Arithmetic Asian Options model described by a two state PDE (1.1),

adapted from [52].

−rv + vt + rxvx +
1

2
σ2x2vxx + xvy = 0 (1.1)

where v = v (t, x, y). i.e, the dependent variable is v, and the independent

variables are t, x, y, subject to the following boundary conditions:

v (T, x, y) = h (y) , x ≥ 0, y ∈ R, (1.2)

v (t, 0, y) = e−r(T−t)h (y) , 0 ≤ t ≤ T, y ∈ R. (1.3)
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1.3 Aim and Objectives

The primary aim of this paper is to obtain an analytic solution to the PDE

given in (1.1) using Lie symmetry methods. This goal will be accomplished

through the following objectives:

1. Find the determining equations.

2. Solve for infinitesimal generators.

3. Find invariant solutions.

4. Investigate how changes in parameters such as volatility, interest rates,

and time influence option prices.
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Chapter 2

Methods

2.1 Symmetries of Differential Equations

2.1.1 Introduction

Many mathematical models have symmetries, especially those that are ex-

pressed in terms of DEs [53, 54, 55, 56]. Lie group theory—named after the

Norwegian mathematician Marius Sophus Lie—is the branch of mathemat-

ics that represents and synthesizes the symmetries of DEs [57, 58, 59]. An

organised method for finding the exact solutions to PDEs and ODEs is the

Lie approach [60, 61, 62, 63, 64, 65, 66].

2.1.2 Preliminaries

In this section, we give some important definitions adopted from [67, 68, 69].

Definition 2.1.2.1. A kth-order (k ≥ 1) system E of s DEs is defined by

Eσ(x, u, u(1), . . . , u(k)) = 0, σ = 1, . . . , s, (2.1)

where u ≡ (u1, u2, . . . , uq) is the dependent vector, x ≡ (x1, x2, . . . , xn) is the

independent vector, and u(1), u(2), . . . , u(k) are respectively the collection of
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all first, second, up to kth-order derivatives.

Definition 2.1.2.2. A symmetry transformation of the system (2.1) is an

invertible transformation of the variables x and u, namely

x̄i = f i(x, u), ūα = ϕα(x, u), i = 1, . . . , n; α = 1, . . . , q, (2.2)

that leaves (2.1) form-invariant in the new variables x̄ and ū, i.e.,

Eσ(x̄, ū, ū(1), . . . , ū(k)) = 0, σ = 1, . . . , s, (2.3)

whenever (2.1) is satisfied.

Definition 2.1.2.3. A set G of transformations

Ta : x̄
i = f i(x, u, a), ūα = ϕα(x, u, a), i = 1, . . . , n; α = 1, . . . , q, (2.4)

is called a continuous one-parameter (local) Lie-group of transformations

in Rn+q provided the group properties of closure, identity, and inverses are

satisfied. Here f i and ϕα are differentiable functions and a is a real parameter

which continuously takes values in a neighborhood D ⊆ R of a = 0.

Definition 2.1.2.4. An infinitesimal generator X of the group transforma-

tions G (2.4) is the differential operator of the form

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
, (2.5)

such that
x̄i = xi + aξi(x, u) +O(a2) = (1 + aX)xi,

ūα = uα + aηα(x, u) +O(a2) = (1 + aX)uα.
(2.6)

Here and throughout this section, the Einstein summation convention is

adopted. The one-parameter group elements (2.6) are known as the infinites-

imal transformations obtained from (2.4) by first-order (Taylor expansion)
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approximations around parameter a = 0. The operator (2.5) is also called

the Lie point symmetry generator.

Definition 2.1.2.5. The extended infinitesimal generator X [k] of the kth

prolonged (extended) group G[k] on the space (x, u, . . . , u(k)) is called the kth

prolongation of X, given by

X [k] = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζαi (x, u, u

(1))
∂

∂uα
i

+ · · ·+ ζα(i1...ik)
∂

∂uα
(i1...ik)

.
(2.7)

The coefficients ζs are defined recursively by the prolongation formulae

ζαi = Di(η
α)− uα

(j)Di(ξ
j),

ζ ijα = Dj(ζ
α
i )− uα

(il)Dj(ξ
l),

...

ζαi1...ik = Dik(ζ
α
i1...ik−1

)− uα
(i1...ikl)

Dik(ξ
l),

(2.8)

where

Dj =
∂

∂xj
+ uα

(j)

∂

∂uα
+ uα

(jk)

∂

∂uα
(k)

. . . ;uα
(j) = Dj(u

α), uα
(jk) = Dj(u

α
(k) (2.9)

is the total derivative operator with respect to xi.

2.1.3 Lie’s Algorithm

In this section we introduce the necessary steps to be followed when calcu-

lating point symmetries of DEs, adopted from [70].

1. Write E given by (2.1) (the PDE or ODE being solved, such as (1.1))

such that all the terms are on the left-hand side.
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2. Write the generator of symmetry

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
. (2.10)

3. Prolong the symmetry generator X to the order which is the same as

that of E, i.e.,

X [k] = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
+ ζαi (x, u, u

(1))
∂

∂uα
i

+ · · ·+ ζα(i1...ik)
∂

∂uα
(i1...ik)

.
(2.11)

where the variables ζαi are given by (2.8).

4. Apply the prolonged generator X [k] on E evaluated on the surface (2.1)

yielding the symmetry conditions

X [k]
(
Eσ(x, u, u(1), . . . , u(k))

)
|(2.1) = 0, σ = 1, . . . , s. (2.12)

5. Substitute the ζαi upon expansion of the symmetry conditions and re-

place the derivatives which are to be eliminated.

6. Separate the expanded expression with respect to the derivatives of the

dependent variables and their powers resulting in an over-determined

system of linear homogeneous PDEs in terms of ξi and ηα.

7. Solve the over-determined system for the infinitesimals ξi and ηα to

obtain symmetries of E.

8. Construct one-parameter groups.
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2.1.4 Lie Algebra

This section’s contents are adopted from [60].

Definition 2.1.4.1. A Lie algebra is a vector space L over a field F with

a binary operation [−,−] : L × L → L called Lie bracket (also known as

commutator), such that the following axioms are satisfied:

(i) Bilinearity: If X1, X2, X3 ∈ L and a, b ∈ F, then

[aX1 + bX2, X3] = a[X1, X3] + b[X2, X3].

(ii) Skew-Symmetry: If X1 ∈ L, then

[X1, X1] = 0,

and this implies that, for all X1, X2 ∈ L,

[X1, X2] = −[X2, X1].

(iii) Jacobi Identity: If X1, X2, X3 ∈ L, then

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.

Definition 2.1.4.2. Consider a Lie algebra L. If the vector space L is finite-

dimensional, its dimension is the dimension of the Lie algebra, that is, the

finite-dimensional Lie algebra of dimension r is denoted by Lr.

In this project we take F to be the field of real numbers R. We define the

Lie Bracket [−,−] on the set of vector field V as

[X1, X2] = X1X2 −X2X1 for any X1, X2 ∈ V , (2.13)
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where

X1 = ξi1(x, u)
∂

∂xi
+ ηα1 (x, u)

∂

∂uα
(2.14)

and

X2 = ξi2(x, u)
∂

∂xi
+ ηα2 (x, u)

∂

∂uα
. (2.15)

The binary operation (2.13) makes the space of vector field V a Lie algebra.

2.1.5 Invariant Solutions

This section is adapted from [70]. The primary motivation for determining

the symmetries of DEs is to use them to uncover the structure of the solution

space. A notable characteristic of a symmetry is its ability to transform a

solution into a different one. When dealing with PDEs, finding a general

solution can be extremely challenging or even impossible. Therefore, it is

often necessary to rely on particular solutions. Among these, invariant solu-

tions can be systematically identified when the symmetries of the underlying

equation are known.

Definition 2.1.5.1. A solution uα = Fα(x1, x2, . . . , xn) of Eα is invariant

under the one-parameter group of transformations if

ūα = Fα(x̄1, x̄2, . . . , x̄n). (2.16)

If we perform the first-order Taylor expansion of (2.16) around a = 0 and

use the first-order approximations of the one-parameter group we obtain

uα + aηα + · · · = Fα + aXFα + · · · (2.17)

whenever u = F . This equation implies that

ηα = XFα (2.18)
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whenever u = F . Therefore,

u = F (x1, . . . , xn), (2.19)

is invariant under transformations provided

X(uα − Fα)
∣∣
(2.19)

= 0. (2.20)

Conversely, it can be shown that if (2.20) is satisfied, then u = F is invariant.

Equation (2.20) represents a system of first-order quasi-linear PDEs that can

be solved to obtain the functional form of F . Once this form is obtained,

it is substituted back into the original system, leading to PDEs with fewer

independent variables. If the symmetries of these reduced equations are

known, further reductions can be performed. In favorable cases, this process

results in closed-form solutions of the original system.

2.2 Application of Lie Symmetry Method in

the current study

The infinitesimal generator for (1.1) w.r.t (2.5) is given by

X = ξ1 (t, x, y, v) ∂t+ξ2 (t, x, y, v) ∂x+ξ3 (t, x, y, v) ∂y+η (t, x, y, v) ∂v. (2.21)

The second prolongation using (2.7) is given by

X [2] = ξ2∂x + η∂v + ζt∂vt + ζx∂vx + ζy∂vy + ζxx∂vxx . (2.22)

Equation (2.21) is the infinitesimal generator of (1.1) if and only if

X [2]

(
−rv + vt + rxvx +

1

2
σ2x2vxx + xvy

)
|(1.1) = 0. (2.23)
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From (2.22) and (2.23), we have that

ξ2
(
rvx + σ2xvxx + vy

)
− rη + ζt + rxζx + xζy +

1

2
σ2x2ζxx = 0, (2.24)

which simplifies to

2ξ2
(
rvx + σ2xvxx + vy

)
− 2rη + 2ζt + 2rxζx + 2xζy + σ2x2ζxx = 0. (2.25)

The total derivatives w.r.t t, x, y are given as follows, respectively ( With the

use of (2.9)):

Dt =
∂

∂t
+ vt

∂

∂v
+ vtt

∂

∂vt
+ vtx

∂

∂vx
+ vty

∂

∂vy
+ ..., (2.26)

Dx =
∂

∂x
+ vx

∂

∂v
+ vtx

∂

∂vt
+ vxx

∂

∂vx
+ vxy

∂

∂vy
+ ..., (2.27)

Dy =
∂

∂y
+ vy

∂

∂v
+ vty

∂

∂vt
+ vxy

∂

∂vx
+ vyy

∂

∂vy
+ .... (2.28)

When considering (2.8), the ζs are given as follows:

ζt = Dt(η)− vtDt(ξ
1)− vxDt(ξ

2)− vyDt(ξ
3), (2.29)

ζx = Dx(η)− vtDx(ξ
1)− vxDx(ξ

2)− vyDx(ξ
3), (2.30)

ζy = Dy(η)− vtDy(ξ
1)− vxDy(ξ

2)− vyDy(ξ
3), (2.31)

ζxx = Dx(ζx)− vtxDx(ξ
1)− vxxDx(ξ

2)− vxyDx(ξ
3). (2.32)
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Now, from (2.26) and (2.29), we have that

ζt = ηt + vt(ηv − ξ1t )− v2t ξ
1
v − vxξ

2
t − vtvxξ

2
v − vyξ

3
t − vtvyξ

3
v . (2.33)

From (2.27) and (2.30) we have that

ζx = ηx + vx(ηv − ξ2x)− v2xξ
2
v − vtξ

1
x − vtvxξ

1
v − vyξ

3
x − vxvyξ

3
v . (2.34)

From (2.28) and (2.31) we have that

ζy = ηy + vy(ηv − ξ3y)− v2yξ
3
v − vtξ

1
y − vtvyξ

1
v − vxξ

2
y − vxvyξ

2
v . (2.35)

From (2.27), (2.34), and (2.32) we have that

ζxx = ηxx + vxηvx + vxxηv − vxxξ
2
x + vxηvx + v2xηvv

− vxξ
2
xx − v2xξ

2
vx − v2xξ

2
vx − v3xξ

2
vv − 2vxvxxξ

2
v − vtxξ

1
x

− vtξ
1
xx − vtvxξ

1
vx − vtvxξ

1
vx − vtv

2
xξ

1
vv − vtvxxξ

1
v − vxvtxξ

1
v

− vxvyξ
3
vx −−v2xvyξ

3
vv − vxvxyξ

3
v − vyvxxξ

3
v − vyξ

3
xx − vxvyξ

3
vx

− vxyξ
3
x − vtxξ

1
x − vxvtxξ

1
v − vxxξ

2
x − vxvxxξ

2
v − vxyξ

3
x − vxvxyξ

3
v ,

(2.36)

which simplifies to

ζxx = ηxx + 2vxηvx + vxxηv − 2vxxξ
2
x + v2xηvv − vxξ

2
xx

− 2v2xξ
2
vx − v3xξ

2
vv − 3vxvxxξ

2
v − 2vtxξ

1
x − vtξ

1
xx

− 2vtvxξ
1
vx − vtv

2
xξ

1
vv − vtvxxξ

1
v − 2vxvtxξ

1
v − 2vxvyξ

3
vx

− v2xvyξ
3
vv − 2vxvxyξ

3
v − vyvxxξ

3
v − vyξ

3
xx − 2vxyξ

3
x.

(2.37)

14



Substituting (2.33), (2.34), (2.35), and (2.37) into (2.25), we have that

2ξ2(rvx + σ2xvxx + vy)− 2rη + 2(ηt + vt(ηv − ξ1t )− v2t ξ
1
v − vxξ

2
t

− vtvxξ
2
v − vyξ

3
t − vtvyξ

3
v) + 2rx(ηx + vx(ηv − ξ2x)− v2xξ

2
v − vtξ

1
x

− vtvxξ
1
v − vyξ

3
x − vxvyξ

3
v) + 2x(ηy + vy(ηv − ξ3y)− v2yξ

3
v − vtξ

1
y

− vtvyξ
1
v − vxξ

2
y − vxvyξ

2
v) + σ2x2(ηxx + 2vxηvx + vxxηv − 2vxxξ

2
x

+ v2xηvv − vxξ
2
xx − 2v2xξ

2
vx − v3xξ

2
vv − 3vxvxxξ

2
v − 2vtxξ

1
x − vtξ

1
xx

− 2vtvxξ
1
vx − vtv

2
xξ

1
vv − vtvxxξ

1
v − 2vxvtxξ

1
v − 2vxvyξ

3
vx − v2xvyξ

3
vv

− 2vxvxyξ
3
v − vyvxxξ

3
v − vyξ

3
xx − 2vxyξ

3
x ) = 0.

(2.38)

Now, from (1.1) we can have that

vt = rv − rxvx −
1

2
σ2x2vxx − xvy (2.39)
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When considering (2.39), (2.38) becomes

2ξ2rvx + 2ξ2σ2xvxx + 2ξ2vy − 2rη + 2ηt + 2(rv − rxvx

− 1

2
σ2x2vxx − xvy)(ηv − ξ1t )− 2(rv − rxvx −

1

2
σ2x2vxx

− xvy)
2ξ1v − 2vxξ

2
t − 2(rv − rxvx −

1

2
σ2x2vxx − xvy)vxξ

2
v

− 2vyξ
3
t − 2(rv − rxvx −

1

2
σ2x2vxx − xvy)vyξ

3
v + 2rxηx

+ 2rxvx(ηv − ξ2x)− 2rxv2xξ
2
v − 2rx(rv − rxvx −

1

2
σ2x2vxx

− xvy)ξ
1
x − 2rx(rv − rxvx −

1

2
σ2x2vxx − xvy)vxξ

1
v − 2rxvyξ

3
x

− 2rxvxvyξ
3
v + 2xηy + 2xvy(ηv − ξ3y)− 2xv2yξ

3
v − 2x(rv − rxvx

− 1

2
σ2x2vxx − xvy)ξ

1
y − 2x(rv − rxvx −

1

2
σ2x2vxx − xvy)vyξ

1
v

− 2xvxξ
2
y − 2xvxvyξ

2
v + σ2x2ηxx + 2σ2x2vxηvx + σ2x2vxxηv

− 2σ2x2vxxξ
2
x + σ2x2v2xηvv − σ2x2vxξ

2
xx − 2σ2x2v2xξ

2
vx − σ2x2v3xξ

2
vv

− 3σ2x2vxvxxξ
2
v − 2σ2x2vtxξ

1
x − σ2x2(rv − rxvx −

1

2
σ2x2vxx

− xvy)ξ
1
xx − 2σ2x2(rv − rxvx −

1

2
σ2x2vxx − xvy)vxξ

1
vx

− σ2x2(rv − rxvx −
1

2
σ2x2vxx − xvy)v

2
xξ

1
vv − σ2x2(rv − rxvx

− 1

2
σ2x2vxx − xvy)vxxξ

1
v − 2σ2x2vxvtxξ

1
v − 2σ2x2vxvyξ

3
vx

− σ2x2v2xvyξ
3
vv − 2σ2x2vxvxyξ

3
v − σ2x2vyvxxξ

3
v − σ2x2vyξ

3
xx

− 2σ2x2vxyξ
3
x = 0,

(2.40)
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which simplifies to

2ξ2rvx + 2ξ2σ2xvxx + 2ξ2vy − 2rη + 2ηt + 2rvηv − 2rxvxηv

− σ2x2vxxηv − 2xvyηv − 2rvξ1t + 2rxvxξ
1
t + σ2x2vxxξ

1
t + 2xvyξ

1
t

− 2r2v2ξ1v + 4vr2xvxξ
1
v + 4xvrvyξ

1
v − 2r2x2v2xξ

1
v − 4rx2vxvyξ

1
v

− 2x2v2yξ
1
v − 2rx3σ2vxvxxξ

1
v − 2σ2x3vyvxxξ

1
v −

1

2
σ4x4v2xxξ

1
v

+ 2rvσ2x2vxxξ
1
v − 2vxξ

2
t − 2rvvxξ

2
v + 2rxv2xξ

2
v + σ2x2vxxvxξ

2
v

+ 2xvyvxξ
2
v − 2vyξ

3
t − 2rvvyξ

3
v + 2rxvxvyξ

3
v + σ2x2vxxvyξ

3
v

+ 2xv2yξ
3
v + 2rxηx + 2rxvxηv − 2rxvxξ

2
x − 2rxv2xξ

2
v − 2r2xvξ1x

+ 2r2x2vxξ
1
x + rσ2x3vxxξ

1
x + 2rx2vyξ

1
x − 2r2xvvxξ

1
v + 2r2x2v2xξ

1
v

+ rσ2x3vxxvxξ
1
v + 2rx2vyvxξ

1
v − 2rxvyξ

3
x − 2rxvxvyξ

3
v + 2xηy

+ 2xvyηv − 2xvyξ
3
y − 2xv2yξ

3
v − 2xrvξ1y + 2x2rvxξ

1
y + σ2x3vxxξ

1
y

+ 2x2vyξ
1
y − 2xrvvyξ

1
v + 2x2rvxvyξ

1
v + σ2x3vxxvyξ

1
v + 2x2v2yξ

1
v

− 2xvxξ
2
y − 2xvxvyξ

2
v + σ2x2ηxx + 2σ2x2vxηvx + σ2x2vxxηv

− 2σ2x2vxxξ
2
x + σ2x2v2xηvv − σ2x2vxξ

2
xx − 2σ2x2v2xξ

2
vx − σ2x2v3xξ

2
vv

− 3σ2x2vxvxxξ
2
v − 2σ2x2vtxξ

1
x − σ2x2rvξ1xx + σ2x3rvxξ

1
xx

+
1

2
σ4x4vxxξ

1
xx + σ2x3vyξ

1
xx − 2σ2x2rvvxξ

1
vx + 2σ2x3rv2xξ

1
vx

+ σ4x4vxxvxξ
1
vx + 2σ2x3vyvxξ

1
vx − σ2x2rvv2xξ

1
vv + σ2x3rv3xξ

1
vv

+
1

2
σ4x4vxxv

2
xξ

1
vv + σ2x3vyv

2
xξ

1
vv − σ2x2rvvxxξ

1
v + σ2x3rvxvxxξ

1
v

+
1

2
σ4x4v2xxξ

1
v + σ2x3xvyvxxξ

1
v − 2σ2x2vxvtxξ

1
v − 2σ2x2vxvyξ

3
vx

− σ2x2v2xvyξ
3
vv − 2σ2x2vxvxyξ

3
v − σ2x2vyvxxξ

3
v − σ2x2vyξ

3
xx

− 2σ2x2vxyξ
3
x = 0.

(2.41)
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Now, separating (2.41) w.r.t powers and products of v we get the following

determining equations:

vtx : ξ1x = 0, (2.42)

vxvxy : ξ
3
v = 0, (2.43)

vxy : ξ
3
x = 0, (2.44)

vxvtx : ξ1v = 0, (2.45)

vxxv
2
x : ξ1vv = 0, (2.46)

vyv
2
x : xξ1vv − ξ3vv = 0, (2.47)

vxvy : −2ξ3vx + 2xξ1vx = 0, (2.48)

v3x : −ξ2vv + 2rxξ1vv = 0, (2.49)

vxvxx : −ξ2v + σ2x2ξ1vx = 0, (2.50)

v2x : ηvv − 2ξ2vx − 2rxξ1vx − rvξ1vv = 0, (2.51)

vxx : 4ξ2 + 2xξ1t + 2rvxξ1v + 2rx2ξ1x + 2x2ξ1y − 4xξ2x + σ2x3ξ1xx = 0, (2.52)
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vy : 2ξ
2 + 2xξ1t + 2rvxξ1v − 2ξ3t − 2rvξ3v + 2rx2ξ1x − 2rxξ3x

+ σ2x3ξ1xx − σ2x2ξ3xx − 2xξ3y + 2x2ξ1y = 0,
(2.53)

vx : 2ξ2r + 2rxξ1t − 2r2xvξ1v − 2ξ2t − 2rvξ2v − 2rxξ2x + 2r2x2ξ1x

+ 2rx2ξ1y − 2xξ2y + 2σ2x2ηvx − rσ2x3ξ1xx − 2rvσ2x2ξ1vx = 0,
(2.54)

Constant-terms:− 2rη + 2ηt + 2rvηv − 2rvξ1t + 2rxηx − 2r2xvξ1x

− 2rvxξ1y + σ2x2ηxx − rvσ2x2ξ1xx − 2r2v2ξ1v + 2xηy = 0.
(2.55)

2.2.1 Solving the determining equations

From (2.42), we have that

ξ1 = ξ1(t, y, v). (2.56)

From (2.45), we have that

ξ1 = ξ1(t, x, y). (2.57)

Now, from (2.56) and (2.57) we have that

ξ1 = ξ1(t, y). (2.58)

When considering (2.43), we have that

ξ3 = ξ3(t, x, y), (2.59)
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and from (2.44) we have that

ξ3 = ξ3(t, y, v). (2.60)

Using (2.60) and (2.59) we have that

ξ3 = ξ3(t, y). (2.61)

From (2.46) and (2.47), we have that

ξ3vv = 0,

which is identically satisfied by (2.61).
(2.62)

By (2.48), (2.58), and (2.61), equation (2.48) is satisfied.

Taking (2.45), (2.58), and (2.50), we have that

ξ2 = ξ2(t, x, y). (2.63)

Again, when taking (2.46) and (2.49), we have that

ξ2vv = 0,

which is identically satisfied by (2.63).
(2.64)

Considering (2.51), (2.45), (2.46), (2.58), and (2.63), we have that

ηvv = 0,

⇒ η = a(t, x, y)v + b(t, x, y).
(2.65)

Equations (2.53), (2.58), and (2.61) yield

xξ1t − ξ3t + x2ξ1y − xξ3y + ξ2 = 0, (2.66)
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which when differentiated w.r.t x thrice gives

ξ2(t, x, y) = c(t, y) + xd(t, y) + x2e(t, y). (2.67)

Substituting (2.67) into (2.66) and separating w.r.t powers of x we have that

c(t, y) = ξ3t ,

d(t, y) = ξ3y − ξ1t ,

e(t, y) = −ξ1y .

(2.68)

Then, from (2.67) and (2.68) we have that

ξ2(t, x, y) = ξ3t + xξ3y − xξ1t − x2ξ1y . (2.69)

Now, from (2.52), (2.42), (2.58), (2.65) we have that

2ξ2 + x2ξ1y + xξ1t − 2xξ2x = 0. (2.70)

Using (2.69) and (2.70), we have that

2(ξ3t + xξ3y − xξ1t − x2ξ1y) + x2ξ1y

+ xξ1t − 2x(−2xξ1y + ξ3y − ξ1t ) = 0

⇒ 3x2ξ1y + xξ1t + 2ξ3t = 0.

(2.71)

Differentiating (2.71) w.r.t x twice we have that

18ξ1y = 0,

⇒ ξ1 = ξ1(t).
(2.72)

And thus, (2.71) and (2.72) yield

xξ1t + 2ξ3t = 0, (2.73)
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which when differentiated w.r.t x gives

ξ1t = 0,

⇒ ξ1 = K1.
(2.74)

Thus, from (2.73) and (2.74), we have that

ξ3t = 0,

⇒ ξ3 = ξ3(y).
(2.75)

When considering (2.54), (2.58), and (2.61), we have that

2rx2ξ1y − 2xξ2y − 2rxξ2x + 2σ2x2ηvx − σ2x2ξ2xx + 2rxξ1t − 2ξ1t = 0. (2.76)

Taking into consideration (2.69) (2.74), and (2.75), equation (2.76) becomes

−xξ3yy − rξ3y + xσ2ax = 0. (2.77)

Differentiating (2.77) w.r.t x gives and solving the output yields

a(t, x, y) = f(t, y) +
xξ3yy
σ2

. (2.78)

When substituting (2.78) into (2.65) we have that

η =

(
f(t, y) +

xξ3yy
σ2

)
v + b(t, x, y). (2.79)

From (2.55) and (2.58), we have that

−2rη + 2rvηv + 2ηt + 2rxηx + x2σ2ηxx + 2xηy − 2rv
(
xξ1y + ξ1t

)
= 0, (2.80)
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which when considering (2.74) and (2.65), becomes

vx(ay) + x(by) + rvx(ax) + rx(bx) +
1

2
vx2σ2(axx)

+
1

2
x2σ2(bxx) + v(at) + bt − rb = 0.

(2.81)

When considering (2.78), equation (2.81) becomes

rvxξ3yy
σ2

+
vx2ξ3yyy

σ2
+ vx(fy) + v(ft)

+ x(by) + rx(bx) +
1

2
x2σ2(bxx) + bt − rb = 0.

(2.82)

Differentiating (2.82) w.r.t v gives

ft + xfy +
rxξ3yy
σ2

+
x2ξ3yyy
σ2

= 0. (2.83)

Again, differentiating (2.83) w.r.t x twice gives

2ξ3yyy
σ2

= 0, (2.84)

which when solving yields

ξ3 = K2 + yK3 + y2K4. (2.85)

Now, when considering (2.82) and (2.85) we have that

2rvxK4

σ2
+ vx(fy) + v(ft) + x(by) + rx(bx)

+
1

2
x2σ2(bxx) + bt − rb = 0,

(2.86)

which when differentiated w.r.t v, then w.r.t x gives

2rK4

σ2
+ fy = 0. (2.87)
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Solving for f on (2.87) yields

f = −2ryK4

σ2
+ g(t). (2.88)

Now, from (2.86) and (2.88) we have that

v(gt) + x(by) + rx(bx) +
1

2
x2σ2(bxx) + bt − rb = 0. (2.89)

Differentiating (2.89) w.r.t v gives

gt = 0,

⇒ g = K5.
(2.90)

Taking into consideration (2.90), equation (2.89) becomes

x(by) + rx(bx) +
1

2
x2σ2(bxx) + bt − rb = 0. (2.91)

Now, when considering (2.69), (2.74), and (2.85) we have that

ξ2 = xK3 + 2xyK4. (2.92)

Again, when considering (2.79), (2.85), (2.88), and (2.90) we have that

η = v

(
2xK4 − 2ryK4

σ2
+K5

)
+ b(t, x, y). (2.93)

Substituting (2.74), (2.85), (2.92), and (2.93) into (2.21) gives

X = K1∂t + (xK3 + 2xyK4) ∂x +
(
K2 + yK3 + y2K4

)
∂y

+

(
v

(
2xK4 − 2ryK4

σ2
+K5

)
+ b(t, x, y)

)
∂v,

where K1, K2, K3, K4 and K5 are constants, and b(t, x, y) is some function.

(2.94)
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Now, (2.94) will be used to find the infinitesimal generators for (1.1) as

follows:

Case 1:

When K1 = 1, K2 = K3 = K4 = K5 = b(t, x, y) = 0 we have

X1 = ∂t. (2.95)

Case 2:

When K2 = 1, K1 = K3 = K4 = K5 = b(t, x, y) = 0 we have

X2 = ∂y. (2.96)

Case 3:

When K3 = 1, K1 = K2 = K4 = K5 = b(t, x, y) = 0 we have

X3 = x∂x + y∂y. (2.97)

Case 4:

When K4 = 1, K1 = K2 = K3 = K5 = b(t, x, y) = 0 we have

X4 = 2xy∂x + y2∂y + v

(
2x− 2ry

σ2

)
∂v. (2.98)

Case 5:

When K5 = 1, K1 = K2 = K3 = K4 = b(t, x, y) = 0 we have

X5 = v∂v. (2.99)

Case 6:

When K1 = K2 = K3 = K4 = K5 = 0 we have

Xb = b(t, x, y)∂v. (2.100)
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2.2.2 Finding the Lie Brackets

Let b(t, x, y) = b.

[X1, X1]:

[X1, X1] = 0 (2.101)

[X1, X2]:

[X1, X2] = X1X2 −X2X1

= ∂t∂y − ∂y∂t

= 0

(2.102)

[X1, X3]:

[X1, X3] = X1X3 −X3X1

= ∂t(x∂x + y∂y)− (x∂x + y∂y)∂t

= x(∂t∂x) + y(∂t∂y)− x(∂t∂x)− y(∂t∂y)

= 0

(2.103)

[X2, X1]:

[X2, X1] = −[X1, X2]

= 0
(2.104)

[X2, X2]:

[X2, X2] = 0 (2.105)

[X2, X3]:

[X2, X3] = X2X3 −X3X2

= ∂y(x∂x + y∂y)− (x∂x + y∂y)∂y

= ∂y

= X2

(2.106)
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[X3, X1]:

[X3, X1] = −[X1, X3]

= 0
(2.107)

[X3, X2]:

[X3, X2] = −[X2, X3]

= −X2

(2.108)

[X3, X3]:

[X3, X3] = 0 (2.109)

↗ [Xi, Xj] X1 X2 X3 X4 X5 Xb

X1 0 0 0 0 0 (∂tb)∂v
X2 0 0 X2 2X3 − 2r

σ2X5 0 (∂yb)∂v
X3 0 −X2 0 X ′′b 0 Xb
X4 0 −(2X3 − 2r

σ2X5) −X ′′b 0 0 X ′b
X5 0 0 0 0 0 −Xb

Xb −(∂tb)∂v −(∂yb)∂v −Xb −X ′b Xb 0

Table 2.1: Table of Lie brackets

Where
Xb = x(∂xb)∂v + y(∂yb)∂v,

X ′b = 2xy∂xbv + y2∂ybv − b

(
2x− 2ry

σ2

)
∂v,

X ′′b = 2xy∂x + y2∂y −
2

σ2
X5 −

2r

σ2
X5.

(2.110)
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2.2.3 Finding invariant solutions

To determine the form of the solution that is invariant under X, we need to

solve the quasi-linear PDE given by (2.20).

If we consider the combination of (2.95) and (2.96) to form a new in-

finitesimal generator, say X6, we have

X6 = ∂t + ∂y, (2.111)

which yields the following characteristic equation;
dt
1

=
dy
1

=
dv
0
. (2.112)

Taking the first and second ratios of (2.112) we have that

dt
1

=
dy
1
,

⇒ t = y + C1,

⇒ C1 = t− y,

where C1 is a constant of integration.

(2.113)

Taking the third ratio of (2.112) we have

v = C2,

where C2 is a constant of integration.
(2.114)

From (2.113) and (2.114), we thus have

v(t, x, y) = k(t− y) or v(t, x, y) = k(C1),

which is an invariant solution, where k is some arbitrary function.
(2.115)
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Substituting (2.115) into (1.1) yields the following equation:

− rk(t− y) +
∂

∂t
k(t− y) + rx

∂

∂x
k(t− y)

+
1

2
σ2x2 ∂2

∂x2
k(t− y) + x

∂

∂y
k(t− y) = 0,

(2.116)

which simplifies to

−rk + k′ − xk′ = 0, (2.117)

which further simplifies to

−rk + k′(1− x) = 0. (2.118)

When solving for k we have

k = Me(
r(t−y)
1−x ), x ̸= 1,

where M is a constant of integration.
(2.119)

Using (2.115) and (2.119) we have the following invariant solution for (1.1):

v(t, x, y) = Me(
r(t−y)
1−x ). (2.120)

If we take the combination of (2.95), (2.96), and (2.99) to form a new in-

finitesimal generator, say X7, we have

X7 = ∂t + ∂y + v∂v, (2.121)

which yields the following characteristic equation

dt
1

=
dy
1

=
dv
v
. (2.122)
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Taking the first and second ratios of (2.122) we have that

dt
1

=
dy
1
,

⇒ t = y + C3,

⇒ C3 = t− y,

where C3 is a constant of integration.

(2.123)

Taking the first and third ratios of (2.122) we have

dt
1

=
dv
v
,

⇒ t = ln v + C4,

⇒ C4 = t− ln v,

where C4 is a constant of integration.

(2.124)

Now, from (2.123) and (2.124) we can deduce that

t− ln v = g(t− y)

⇒ v(t, x, y) = et−g(t−y) or v(t, x, y) = et−g(C3),

which is an invariant solution, where g is some arbitrary function.

(2.125)

Substituting (2.125) into (1.1) yields the following equation:

− ret−g(t−y) +
∂

∂t
et−g(t−y) + rx

∂

∂x
et−g(t−y)

+
1

2
σ2x2 ∂2

∂x2
et−g(t−y) + x

∂

∂y
et−g(t−y) = 0,

(2.126)

which simplifies to

−ret−g + et−g(1− g′) + xet−gg′ = 0, (2.127)
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which further simplifies to

et−g(1− r + (−1 + x)g′) = 0. (2.128)

Solving for g we have that

g =
(t− y)(−1 + r)

−1 + x
+N, x ̸= 1,

where N is a constant of integration.

(2.129)

Then from (2.125) and (2.129) we have the following invariant solution for

(1.1):

v(t, x, y) = et−
(t−y)(−1+r)

−1+x
+N (2.130)

Considering (2.97) we have the following characteristic equation

dx
x

=
dy
y

=
dv
0
. (2.131)

Taking the first and second ratios of (2.131) we have

dx
x

=
dy
y
,

⇒ lnx = lny + lnC5,

⇒ C5 =
x

y
, y ̸= 0,

where C5 is a constant of integration.

(2.132)

Taking the third ratio of (2.131) we have

v = C6,

where C6 is a constant of integration.
(2.133)
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From (2.132) and (2.133), we thus have

v(t, x, y) = f

(
x

y

)
or v(t, x, y) = f(C5),

which is an invariant solution, where f is some arbitrary function.

(2.134)

Now, substituting (2.134) into (1.1) we have that

− rf

(
x

y

)
+

∂

∂t
f

(
x

y

)
+ rx

∂

∂x
f

(
x

y

)
+

1

2
σ2x2 ∂2

∂x2
f

(
x

y

)
+ x

∂

∂y
f

(
x

y

)
= 0,

(2.135)

which simplifies to

−rf +
rx

y
f ′ +

σ2x2

2y2
f ′′ − x2

y2
f ′ = 0. (2.136)

Considering (2.98) we have the following characteristic equations

dx
2xy

=
dy
y2

=
σ2

v(2x− 2ry)
dv. (2.137)

Taking the first and second ratios of (2.137) we have that

dx
2xy

=
dy
y2

,

⇒ dx
x

= 2
dy
y
,

⇒ lnx = 2 ln y + lnC7,

⇒ C7 =
x

y2
, y2 ̸= 0,

where C7 is a constant of integration.

(2.138)
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Taking the first and third ratios of (2.137) we have that

dx
2xy

=
σ2

v(2x− 2ry)
dv,

⇒ dx
x

=
yσ2

v(x− ry)
dv,

⇒ lnx+ C8 =
yσ2

(x− ry)
ln v,

⇒ C8 =
yσ2

(x− ry)
ln v − lnx, x ̸= ry,

where C8 is a constant of integration.

(2.139)

From (2.138) and (2.139) we have that

yσ2

(x− ry)
ln v − lnx = j

(
x

y2

)
,

⇒ ln v =

(
x− ry

yσ2

)
j

(
x

y2

)
+

(
x− ry

yσ2

)
lnx,

⇒ v(t, x, y) = e

(
x−ry

yσ2

)
j
(

x
y2

)
+

(
x− ry

yσ2

)
, yσ2 ̸= 0,

which is an invariant solution, where j is some arbitrary function.

(2.140)

Now, substituting (2.140) into (1.1) gives the following equation
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x− ry
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(
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x
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)
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(
x− ry
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+ rx

∂

∂x

(
e

(
x−ry

yσ2
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)
+
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x− ry
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))
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1

2
σ2x2 ∂2
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x− ry
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+ x
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(
e
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x− ry
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= 0,

(2.141)
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which simplifies to
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+
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(2.142)
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Chapter 3

Discussion and conclusion

In this research, we successfully found the determining equations, solved for

the infinitesimal generators, and found four invariant solutions, some of which

are expressed in terms of arbitrary functions. These achievements provide a

robust foundation for understanding the symmetry properties and potential

simplifications of the underlying mathematical model. The invariant solu-

tions are particularly valuable as they offer flexibility and adaptability, al-

lowing for further specification based on additional conditions or constraints,

which is crucial in fields such as financial mathematics.

For future work, we shall focus on solving for the arbitrary functions f and

j to find the final invariant solutions in a simplified form. Additionally,

we will analyze the impact of different boundary conditions on option prices

using these invariant solutions. Further investigation will be directed towards

understanding how changes in parameters such as volatility, interest rates,

and time influence option prices. Finally, we will compare and evaluate the

accuracy and efficiency of the invariant solutions by plotting them against

the exact solutions of the model.
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