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ABSTRACT

In this work, an approximate solution for the 1-Dimensional Westervelt equation is found.
This is done primarily using a numerical approximation method called Finite Di�erence
Method. The �rst part of this work is to approximate the solution in regions of the domain
where the nonlinearities are negligible. The second part of this work is to approximate a
solution in regions of the domain where the nonlinearities are non-negligible.
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INTRODUCTION

The application of nonlinear acoustics in the �eld of medicine has a rich history stretching
back to nineteenth century. It has widely in�ltrated both known pillers of the �eld being
diagnostic medicine and surgical medicine. For a very long time, evasive surgery has been the
number one go to practice as far as medical diagnosis was concerned. This involved cutting
into the human body for a better image so as to make a more informed decision when
diagnosing a patient.

But as new and complex ailments developed throughout the years, this became too much of a
risk as patients would lose immense amounts of blood or develop fatal infections. These
factors created an immediate need for an alternative imaging modality, thus, the era of
ultrasonography amongst other imaging methods was rushed in [1]. Medical ultrasonography
is the imaging of the human body using ultrasound. By ultrasound it is meant those waves
that have frequencies that are well beyond the audible range for human beings. Ultrasound
waves have frequencies ranging from 20Kilohertz upwards.

BACKGROUND TO THE STUDY

Ultrasonic waves have various applications in today's world, especially in the medical sector.
The capabilities of ultrasound in terms of medical diagnostic imaging was an outcome of the
work done by two brothers, Theodore and Frederich Dussik [2]. They tried to diagnose
tumors of the brain using ultrasound sometime in the 1930s and 1940s, which was around the
end of the second world war.

In the late 1940s an American radiologist named Doughlas Howry [3] left his residency at
Denva Veterans Administration Hospital so as to dedicate a massive portion of his time to his
research in ultrasound. His intentions were to produce images of soft tissue structure using
ultrasound. In 1950, Howry recorded the �rst cross-sectional images with utlrasound, working
alongside engineers William Roderick and George Pasakonis in his garage basement.

However, these early developments were not without fault. They comprised of tanks which
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were used for the immersion of patients, which posed a di�culty for critically ill patients, as
they couldn't be immersed in water. In 1964 the �rst contact two-dimensional ultrasound
image was ordered, in an attempt to get an image of the cross-section of the brain. This was
due to e�orts a radiologist at Colombia Presbyterian Medical Center by the name of Donald
King, working alongside Juan Taveras and Ray Brinker. [4].Subsequent developments in
technology and techniques have pivoted Medical Ultrasonography into the advanced state it is
in today.

Although technological advances played an undeniable major role in the development of
ultrasound, we cannot turn a blind eye to the input that mathematics has put forth. In order
to produce a high resolution picture using ultrasound, the propagation of sound must be
modeled using a partial di�erential equation, and it is in solving such said equations that high
resolution images are produced. Our focus is only on manuscripts in which �nite di�erence
method is used to solve the Westervelt equation.

The Westervelt equation is given below

▽2p− 1

c20

∂2p

∂t2
+

δ

c40

∂3p

∂t3
+

β

ρ0c20

∂2p2

∂t2
= 0, (1)

where p is the acoustic pressure, ρ0 and c0 are the ambient density and sound speed,
β = 1+ (B/2A) is the nonlinearity coe�cient and (B/A) is the nonlinearity parameter.This is
an empirical dimensionless parameter that is found by measurement. The �rst two terms in
equation (1) represents the D'Alambertian operator(∇2 − 1

c20

∂2

∂t2
) acting on the acoustic

pressure (p). These describe linear lossless wave propagation at the small-signal sound speed.
The �nal term describes the nonlinear distortion of the wave due to �nite amplitude e�ects.

Guy V. Norton and Robert D. Purrington [6] conducted a study in which the Westervelt
Equation was solved using �nite di�erence method. In their work the Westervelt equation has
higher order terms because they assumed their medium to be a thermoviscous �uid. They
compared the solutions of the equation with viscous attenuaton and the equation with a
convolutional/casual propagation operator. They used a fourth order accurate scheme [5] in
both the space and time domain. The pressure vs time graphs for both variations agree up to
a signi�cant degree.

A thorough investigation on the formation of ultrasound image is carried out by Athananoise
Karamalis and Wolfgang Wein [7]. They create a simulation that takes into account the
initial pulse transmission up until the formation of the image. This is done as a way to cut
costs as ultrasound machines/equipment produce pictures that depend highly on system
parameters. Thus in simulating images, engineers are able to choose the optimal parameters
like transducer shape. The propagation of sound is modeled using the Westervelt equation,
and it is solved using the �nite di�erence method in parallel with the Graphics processing
unit in order to simulate high resolution images.

A fourth order accurate scheme is used for the space-domain, while a second-order accurarate
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scheme is used for the time domain. A combination of these two schemes is shown to yield
impressive results.

Maxim Solovchuk and Tony W.H. Sheu [8] developed a three - dimensional acoustic
thermal-hydro-dynamic coupling model so as to compute the temperature �eld in the hepatic
cancerous region. This model considers the Westervelt equation to model the propagation of
ultrasound in human tissue. The nonlinear equation is then solved using �nite di�erence
method. A sixth order accurate in three point stencil was developed to approximate the
solution.
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OBJECTIVES

1. Solve the Westervelt equation in regions of the domain where the nonlinearities are
negligible

2. To compare the aprroximate solution with the analytical solution

3. To solve the Westervelt equation with nonlinearities using Newton-Raphson algorithm

4. Discuss the results by explaining the behaviour of the solutions as time evolves
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Chapter 1

PROBLEM STATEMENT

For this work, we consider equation (1) up to the second temporal derivative, that means, we
neglect the thermoviscous e�ects, which are signi�cant in elecrical equipment.

PART 1

Find the numerical solution to the 1D Westervelt equation assuming the nonlinear term is
negligible, that is, solve the following problem

∂2p

∂x2
− 1

c20

∂2p

∂t2
= 0, (1.1)

p(0, t) = p(1, t) = 0, (1.2)

p(x, 0) = sin(πx). (1.3)

.

PART 2

Find the numerical solution to the 1D Westervelt equation assuming the nonlinear term is
non-negligible, that is, solve

∂2p

∂x2
− 1

c20

∂2p

∂t2
+

β

ρ0c20

∂2p2

∂t2
= 0, (1.4)

p(0, t) = p(1, t) = 0, (1.5)

p(x, 0) = sin(πx). (1.6)
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Chapter 2

FINITE DIFFERENCE METHOD

This is a numerical approach that is often used to approximate solutions of di�erential
equations provided the boundary conditions are known. It involves partitioning the solution
domain into a �nite number of divisions.

DISCRETIZING THE DOMAIN

The temporal domain [0, T ] is made up of a �nite number of mesh points

0 = t0 < t1 < t2 <, ..., < tN−1 < tNt = T, (2.1)

whereby

△t = tj − tj−1, 0 ≤ j ≤ Nt. (2.2)

On a similar note, the spatial domain [0, L] is replaced by a �nite set of mesh points

0 = x0 < x1 < x2 <, ..., < xN−1 < xNx = L, (2.3)

also

△x = xj − xj−1, 0 ≤ j ≤ Nx. (2.4)
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DISCRETIZING THE SOLUTION(PART 1)

Using �nite di�erence method, we assume a solution only at the interior of the domain
[0, L]× [0, T ] that is

∂2p(xi, tn)

∂x2
− 1

c20

∂2p(xi, tn)

∂t2
= 0, (2.5)

where i = 1, ..., Nx − 1 and n = 1, ..., Nt − 1. For n = 0, we have the initial condition
p(x, 0) = sin(πx) and at the boundaries where i = 0, Nx we have the boundary conditions

p(0, t) = p(1, t) = 0.

2.0.1 DERIVATION OF THE FINITE DIFFERENCES

Suppose that p is a function of time and space such that,

pni = p(xi, tn) (2.6)

pn+1
i = p(xi, tn+1) (2.7)

pn−1
i = p(xi, tn−1) (2.8)

pni+1 = p(xi+1, tn) (2.9)

pni−1 = p(xi−1, tn) (2.10)

where xi+1 = xi+ △ x and tn+1 = tn+ △ t. If we let h =△ x and k =△ t and expand (2.7) by
Taylor expansion with the provision that xi = constant, then we get

pn+1
i = pni + k

∂p

∂t
+

k2

2!

∂2p

∂t2
+

k3

3!

∂3p

∂t3
+ ... (2.11)

Also expand (2.8) by taylor expansion provided that xi = constant, then we get

pn−1
i = pni − k

∂p

∂t
+

k2

2!

∂2p

∂t2
− k3

3!

∂3p

∂t3
+ ... (2.12)

Now adding (2.11) and (2.12), we get that
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pn+1
i + pn−1

i = 2pni + k2∂
2p

∂t2
+O(k4), (2.13)

rearranging (2.13) we arrive at the following

∂2p

∂t2
=

pn−1
i − 2pni + pn+1

i

k2
+O(k2). (2.14)

Equation (2.14) is called the central di�erence approximation of the second partial derivative
with respect to time. Following the same procedure but this time using equations (2.9) and

(2.10) we arrive at the follwing

∂2p

∂x2
=

pni−1 − 2pni + pni+1

h2
+O(h2). (2.15)

Equation (2.15) is called the central di�erence approximation of the second derivative with
respect to space. It is worth noting that the terms O(k2) and O(h2) in equations (2.14) and
(2.15) respectively, imply that we have used the second order accurate central di�erence

scheme.

DISCRETIZING THE SOLUTION(PART 2)

Just as we did in part 1, we assume a solution at the interior of the domain [0, L]× [0, T ]
which results into the following

∂2p(xi, tn)

∂x2
− 1

c20

∂2p(xi, tn)

∂t2
+

β

ρ0c20

∂2p2(xi, tn)

∂t2
= 0, (2.16)

for i = 1, ..., Nx − 1 and n = 1, ..., Nt − 1. For n = 0 we have the initial condition
p(x, 0) = sin(πx) and at the boundaries where i = 0, Nx we have the boundary conditions

p(0, t) = p(1, t) = 0.

REPLACING THE DERIVATIVES BY FINITE DIFFERENCES

The second-order time derivatives are replaced by central di�erences.
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∂2p(xi, tn)

∂t2
=

pn−1
i − 2pni + pn+1

i

△ t2
. (2.17)

A similar approximation of the second-order derivative in the x-direction is as follows

∂2p(xi, tn)

∂x2
=

pni−1 − 2pni + pni+1

△ x2
. (2.18)

The derivation of equations (2.17) and (2.18) is oulined in [9]. Now substituting equations
(2.17) and (2.18) into equation (2.5) results in the following explicit scheme for part 1

λ(pni−1 − 2pni + pni+1)− (pn−1
i − 2pni + pn+1

i ) = 0, (2.19)

which implies

pn+1
i = −pn−1

i + 2(1− λ)pni + λ(pni−1 + pni+1), (2.20)

where λ =
c20△t

2

△x2 .
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2.0.2 NEWTON-RAPHSON METHOD

Firstly we replace the derivatives in (2.6) by the central di�erence scheme in the same manner
that we did for part 1. Thus we have the following

∂2p(xi, tn)

∂t2
=

pn−1
i − 2pni + pn+1

i

△ t2
, (2.21)

∂2p(xi, tn)

∂x2
=

pni−1 − 2pni + pni+1

△ x2
, (2.22)

∂2p2(xi, tn)

∂t2
=

(pn−1
i )2 − 2(pni )

2 + (pn+1
i )2

△ t2
. (2.23)

Thus if we substitute equations (2.21),(2.22) and (2.23) into equation (2.6) and let h =△ x
and k =△ t, we get that

pni−1 − 2pni + pni+1

h2
− 1

c0

pn−1
i − 2pni + pn+1

i

k2
+

β

ρ0c40

(pn−1
i )2 − 2(pni )

2 + (pn+1
i )2

k2
= 0. (2.24)

Now if we let A =
k2c20
h2 and B = β

ρ0c20
we get that

A(pni−1 − 2pni + pni+1)− (pn−1
i − 2pni + pn+1

i ) +B((pn−1
i )2 − 2(pni )

2 + (pn+1
i )2) = 0. (2.25)

Equation (2.24) is a system of nonlinear equations.Thus we suppose F is a function such that

F = A(pni−1 − 2pni + pni+1)− (pn−1
i − 2pni + pn+1

i ) +B((pn−1
i )2 − 2(pni )

2 + (pn+1
i )2). (2.26)

This way, we can treat this as a roots �nding problem where we use Newton-Raphson
algorithm to approximate the di�erent values of p such that F = 0. In order to achieve this
we neeed to compute the Jacobian matrix J for the system of nonlinear equations.

For this work, we consider iterations in space alone while time is held constant at the �rst
increment. This simply says our time index, n, is held at a �xed value of 1 while the space
index is allowed to run from 1 ≤ i ≤ Nx − 1.
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The Jacobian is de�ned as follows

J = [
∂F

∂pni
] (2.27)

where in our case n = 1 and 1 ≤ i ≤ Nx − 1. Now we are in a position to perform the
algorithm, which is given as follows

pj+1 = pj − J−1F(P j). (2.28)

Where Nx = 1−0
0.001

= 1000, this implies

F =



F1

F2

F3

.

.

.
F998

F999


=



Ap10 + Ap12 − 2(A− 1)p11 − p01 − p21 +B(p01)
2 +B(p21)

2 − 2B(p11)
2

Ap11 + Ap13 − 2(A− 1)p12 − p02 − p22 +B(p02)
2 +B(p22)

2 − 2B(p12)
2

Ap12 + Ap14 − 2(A− 1)p13 − p03 − p23 +B(p03)
2 +B(p23)

2 − 2B(p13)
2

.

.

.
Ap1997 + Ap1999 − 2(A− 1)p1998 − p0998 − p2998 +B(p0998)

2 +B(p2998)
2 − 2B(p1998)

2

Ap1998 + Ap11000 − 2(A− 1)p1999 − p0999 − p2999 +B(p0999)
2 +B(p2999)

2 − 2B(p1999)
2


and also

J =



−2(A− 1)− 4Bp11 A . . . 0 0 0
A −2(A− 1)− 4Bp12 A
. A −2(A− 1)− 4Bp13 .

. . . .
. . . . .

. . . . A
. A −2(A− 1)− 4Bp1998 A
0 0 0 . . 0 A −2(A− 1)− 4Bp1999
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2.0.3 VON NEUMANN STABILITY ANALYSIS

The stability analysis is performed to check for which values of λ do we get a stable solution
and which values cause the solution to blow up. The discrete form of equation (2.5) is given by

pn+1
i = −pn−1

i + 2(1− λ)pni + λ(pni−1 + pni+1). (2.29)

Thus the round-o� error is given by

∈n
i ≈ (pni )exact − (pni )approximate. (2.30)

Since (2.29) is a linear equation then

∈n+1
i = − ∈n−1

i +2(1− λ) ∈n
i +λ(∈n

i−1 + ∈n
i+1). (2.31)

Now the Fourier representation of the round-o� error is given by

∈m (x, t) ≈∈n
i = eateikmx. (2.32)

Stability Criterion:

|G| = |∈
n+1
i

∈n
i

| ≤ 1. (2.33)

substituting (2.32) into (2.31) yields;

ea(t+△t)eikmx = −ea(t−△t)eikmx + 2(1− λ)eateikmx + λ(eateikm(x−△x) + eateikm(x+△x)) (2.34)

dividing(2.34) by (2.32) we get that;

ea△t = −e−a△t + 2(1− λ) + λ(e−ikm△x + eikm△x). (2.35)

Since

sin2(
km △ x

2
) =

−1

4
(e−ikm△x + eikm△x − 2). (2.36)
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This implies that

e−ikm△x + eikm△x = 2(1− 2λ sin2(
km △ x

2
)). (2.37)

Now

e−ikm△x + eikm△x

2
= (1− 2λ sin2(

km △ x

2
)). (2.38)

Taking the absolute value of (2.38), we get that

−1 ≤ 1− 2λ sin2(
km △ x

2
) ≤ 1, (2.39)

which implies that

λ sin2(
km △ x

2
) ≤ 1. (2.40)

So �nally we get that

λ ≤ 1.

This implies that

c20 △ t2

△ x2
≤ 1. (2.41)
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Chapter 3

RESULTS

� In �gure 3.1, we have assumed that △ x = 0.001 and △ t = 0.025. This simulation runs
for a tenth of a second.

� Figure 3.2 is the analytical solution of (2.5) which is given by p(x, t) = cos(πt) sin(πx)

� Figure 3.3 is comparison of the numerical solution and the exact solution

� Figure 3.4 is the transient property of the wave,that is the wave behaviour as time
evoloves.

� Figure 3.5 is the solution of the wave equation in regions of the domain where the
nonlinearities are not negligible
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3.0.1 DISCUSSION

In this work, we started by presenting our problem as �nding the numerical solution of
Westervelt equation. We then proceeded to splitting the project into two parts, in which, the
�rst part we neglegted the nonlinear term and developed an explicit �nite di�erence scheme
to approximate the solution of the Westervelt equation. After performing the Von-Neuman
stability analysis, we showed that the numerical solution agrees with the analytical solution.
Lastly, for the �rst part, we simulated the behaviour of the wave as time evolves.

For the second part of this work, �nite di�erence method was coupled with Newton-Raphson
method to discretise and approximate the solution. The results of part 2 show a dent in the
graph of the wave, this is caused by the rapid absorption of the wave energy as it propagates
through human tissue. The single dent that is seen in the graph is due to the fact that we ran
the algorithm for a single initial time increment.

3.0.2 CONCLUSION

The solution of the Westervelt equation was approximated in di�ferent regions. Firstly a
solution was found in regions where the nonlinear term was neglected. This was done using
�nite di�erence method, and the results agree with those of the analytical solution. The
behaviour of the wave was simulated for di�erent time steps. Secondly, �nite di�erence
method together with Newton-Raphson method were used to approximate the solution of the
Westervelt equation including the nonlinear term. By considering the three dimensional form
of the Westervelt equation and higher order �nite di�erence approximation schemes coupled
with graphics technology we can open the door to high quality resolution pictures in Medical
ultrasound.
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Figure 3.1: NUMERICAL SOLUTION Figure 3.2: EXACT SOLUTION

Figure 3.3: NUMERICAL vs EXACT Figure 3.4: TRANSIENT SOLUTION

Figure 3.5: NONLINEAR SOLUTION
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Appendix A

PYTHON CODES FOR THE

GRAPHICAL SOLUTIONS

THE CODE BELOW IS FOR THE FIRST IMAGE

import numpy as np
import matp lo t l i b . pyplot as p l t

a = 0
b = 1
c = 0
d = 0 .1
c_not = 1

h = 0.0001
k = 0.025

x = np . arange (a , b+h , h)
t = np . arange ( c , d+k , k )
boundarycondit ions = [ 0 , 0 ]
i n i t i a l c o n d i t i o n s = np . s i n (np . p i *x )

n = len (x )
m = len ( t )
f a c t o r = ( c_not**2*k**2)/h**2

17



P = np . z e r o s ( ( n ,m) )
P [ 0 , : ] = boundarycondit ions [ 0 ]
P[ =1 , : ] = boundarycondit ions [ 1 ]
P [ : , 0 ] = i n i t i a l c o n d i t i o n s

f o r j in range (1 ,m=1):
f o r i in range (1 , n=1):
P [ i , j +1] = =P[ i , j =1] + 2*(1 = f a c t o r )*P[ i , j ] + f a c t o r *(P[ i =1, j ] + P[ i +1, j ] )

p l t . p l o t (x ,P[ : , 0 ] , ' =b ' , l a b e l = ' Approximate So lut ion ' )

p l t . x l ab e l ( ' Distance ' )
p l t . y l ab e l ( ' Acoust ic Pressure [MPa] ' )
p l t . l egend ( )
p l t . g r i d (True )
p l t . show ( )

THE CODE BELOW IS FOR THE SECOND IMAGE

import numpy as np
import matp lo t l i b . pyplot as p l t

a = 0
b = 1
c = 0
d = 0 .1
c_not = 1

h = 0.0001
k = 0.025

x = np . arange (a , b+h , h)
t = np . arange ( c , d+k , k )

n = len (x )
m = len ( t )

18



boundarycondit ions = [ 0 , 0 ]
i n i t i a l c o n d i t i o n s = np . s i n (np . p i *x )

u = np . z e r o s ( ( n ,m) )

f o r j in range (m) :
f o r i in range (n ) :
u [ i , j ] = np . cos (np . p i * t [ j ] ) * np . s i n (np . p i *x [ i ] )

p l t . p l o t (x , u [ : ,0 ] , '==b ' , l a b e l = ' Exact So lut ion ' )
p l t . x l ab e l ( ' Distance ' )
p l t . y l ab e l ( ' Acoust ic Pressure [MPa] ' )
p l t . l egend ( )
p l t . g r i d (True )
p l t . show ( )

THE CODE BELOW IS FOR THE THIRD IMAGE

import numpy as np
import matp lo t l i b . pyplot as p l t

a = 0
b = 1
c = 0
d = 0 .1
c_not = 1

h = 0.0001
k = 0.025

x = np . arange (a , b+h , h)
t = np . arange ( c , d+k , k )
boundarycondit ions = [ 0 , 0 ]
i n i t i a l c o n d i t i o n s = np . s i n (np . p i *x )

n = len (x )
m = len ( t )
f a c t o r = ( c_not**2*k**2)/h**2
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u = np . z e r o s ( ( n ,m) )

f o r j in range (m) :
f o r i in range (n ) :
u [ i , j ] = np . cos (np . p i * t [ j ] ) * np . s i n (np . p i *x [ i ] )

P = np . z e r o s ( ( n ,m) )
P [ 0 , : ] = boundarycondit ions [ 0 ]
P[ =1 , : ] = boundarycondit ions [ 1 ]
P [ : , 0 ] = i n i t i a l c o n d i t i o n s

f o r j in range (1 ,m=1):
f o r i in range (1 , n=1):
P [ i , j +1] = =P[ i , j =1] + 2*(1 = f a c t o r )*P[ i , j ] + f a c t o r *(P[ i =1, j ] + P[ i +1, j ] )

p l t . p l o t (x ,P[ : ,0 ] , '== r ' , l a b e l = ' Approximate So lut ion ' )
p l t . p l o t (x , u [ : ,0 ] , '==b ' , l a b e l = ' Exact So lut ion ' )
p l t . t i t l e ( ' Approximate vs Exact So lut ion ' )
p l t . x l ab e l ( ' Distance ' )
p l t . y l ab e l ( ' Acoust ic Pressure [MPa] ' )
p l t . l egend ( )
p l t . g r i d (True )
p l t . show ( )

THE BELOW IS FOR THE FOURTH IMAGE

import numpy as np
import matp lo t l i b . pyplot as p l t

a = 0
b = 1
c = 0
d = 0 .1
c_not = 1

h = 0.0001
k = 0.025
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x = np . arange (a , b+h , h)
t = np . arange ( c , d+k , k )
boundarycondit ions = [ 0 , 0 ]
i n i t i a l c o n d i t i o n s = np . s i n (np . p i *x )

n = len (x )
m = len ( t )
f a c t o r = ( c_not**2*k**2)/h**2

P = np . z e r o s ( ( n ,m) )
P [ 0 , : ] = boundarycondit ions [ 0 ]
P[ =1 , : ] = boundarycondit ions [ 1 ]
P [ : , 0 ] = i n i t i a l c o n d i t i o n s

f o r j in range (1 ,m=1):
f o r i in range (1 , n=1):
P [ i , j +1] = =P[ i , j =1] + 2*(1 = f a c t o r )*P[ i , j ] + f a c t o r *(P[ i =1, j ] + P[ i +1, j ] )

p l t . p l o t (x ,P)
p l t . t i t l e ( ' Trans ient Property o f a Wave ' )
p l t . x l ab e l ( ' Distance ' )
p l t . y l ab e l ( ' Acoust ic Pressure [MPa] ' )
p l t . l egend ( t )
p l t . g r i d (True )
p l t . show ( )

THE CODE BELOW IS FOR THE LAST IMAGE

import numpy as np
import matp lo t l i b . pyplot as p l t

#boundary parameters
a = 0
b = 1
c = 0
d = 0 .1

#s t e p s i z e s
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h = 0.001
k = 0.025

x = np . arange (a , b+h , h)
t = np . arange ( c , d+k , k )
boundarycondit ions = [ 0 , 0 ]
i n i t i a l c o n d i o n s = np . s i n (np . p i *x )

n = len (x )
m = len ( t )

#so l u t i o n meshgrid with boundary cond i t i on s
p = np . z e r o s ( ( n ,m) )
p [ 0 , : ] = boundarycondit ions [ 0 ]
p [ =1 , : ] = boundarycondit ions [ 1 ]
p [ : , 0 ] = i n i t i a l c o n d i o n s
f a c t o r = k**2/h**2
beta = 1

#func t i on o f non=l i n e a r equat ions
F = np . z e r o s ( ( n ) )

de f Func (p , f a c to r , beta ) :

f o r i in range (1 , n=1):

F [ i ] = f a c t o r *p [ i =1 ,1] + f a c t o r *p [ i +1 ,1] = 2*( f a c t o r = 1)*p [ i , 1 ] = p [ i , 0 ] =

p [ i , 2 ] + beta *p [ i , 0 ]**2 + beta *p [ i , 2 ]**2 = 2* beta *p [ i , 1 ]**2

re turn F

#Jacobian Matrix
A = np . z e r o s ( ( n , n ) )
A[ 0 , 0 ] = =2*( f a c t o r = 1) = 4* beta *p [ 1 , 1 ]
A[=1 ,=1] = =2*( f a c t o r = 1) = 4* beta *p [ n=1 ,1]
A[ 0 , 1 ] = f a c t o r
A[ 1 , 0 ] = f a c t o r

f o r j in range (1 , n=1):

A[ j , j ] = =2*( f a c t o r = 1) = 4* beta *p [ j , 1 ]
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A[ j +1, j ] = f a c t o r
A[ j , j +1] = f a c t o r

#colounm matrix o f p r e s su r e va lue s
de f p_value (p ) :

P = np . z e r o s ( ( n ) )

f o r i in range (n ) :

P [ i ] = p [ i , 1 ]

r e turn P

#Newton=Raphson Algorithm
def Newton (Func , f a c to r , beta ,A, p , eps ) :

prs = p_value (p)
F_value = Func (p , f a c to r , beta )
F_norm = np . l i n a l g . norm(F_value , ord = 2)
i t e ra t i on_counte r = 0

whi le abs (F_norm) > eps and i t e ra t i on_counte r < 100 :
d e l t a = np . l i n a l g . s o l v e (A,=F_value )
prs = prs + de l t a
F_value = Func (p , f a c to r , beta )
F_norm = np . l i n a l g . norm(F_value , ord = 2)
i t e ra t i on_counte r += 1

i f abs (F_norm) > eps :
i t e r a t i on_counte r = =1
re turn prs

s o l u t i o n = Newton (Func , f a c to r , beta ,A, p , eps = 0 .0001)

p l t . p l o t (x , s o l u t i o n )
p l t . x l ab e l ( ' Distance ' )
p l t . y l ab e l ( ' Acoust ic Pressure [MPa] ' )
p l t . t i t l e ( ' Approximate So lu t i on For The Nonl inear Wave Equation ' )
p l t . g r i d (True )
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p l t . show ( )

24



Bibliography

[1] O. Rudenko, �Nonlinear acoustics in medicine: A review,� Physics of Wave Phenomena,
vol. 30, no. 2, pp. 73�85, 2022.

[2] K. A. Kaproth-Joslin, R. Nicola, and V. S. Dogra, �The history of us: from bats and boats
to the bedside and beyond: Rsna centennial article,� Radiographics, vol. 35, no. 3, pp. 960�
970, 2015.

[3] C. F. Dietrich, L. Bolondi, F. Duck, D. H. Evans, C. Ewertsen, A. G. Fraser, O. H. Gilja,
C. Jenssen, E. Merz, C. Nolsoe, et al., �History of ultrasound in medicine from its birth to
date (2022), on occasion of the 50 years anniversary of efsumb. a publication of the european
federation of societies for ultrasound in medicine and biology (efsumb), designed to record
the historical development of medical ultrasound,� Medical Ultrasonography, vol. 24, no. 4,
pp. 434�450, 2022.

[4] B. B. Goldberg, R. Gramiak, and A. K. Freimanis, �Early history of diagnostic ultrasound:
the role of american radiologists,� AJR Am J Roentgenol, vol. 160, no. 1, pp. 189�194, 1993.

[5] A. Bayliss, K. Jordan, B. LeMesurier, and E. Turkel, �A fourth-order accurate �nite-
di�erence scheme for the computation of elastic waves,� Bulletin of the Seismological Society

of America, vol. 76, no. 4, pp. 1115�1132, 1986.

[6] R. D. Purrington and G. V. Norton, �A numerical comparison of the westervelt equation
with viscous attenuation and a causal propagation operator,� Mathematics and Computers

in Simulation, vol. 82, no. 7, pp. 1287�1297, 2012.

[7] A. Karamalis, W. Wein, and N. Navab, �Fast ultrasound image simulation using the wester-
velt equation,� in Medical Image Computing and Computer-Assisted Intervention�MICCAI

2010: 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings,

Part I 13, pp. 243�250, Springer, 2010.

[8] M. Solovchuk, T. W. Sheu, and M. Thiriet, �Simulation of nonlinear westervelt equation for
the investigation of acoustic streaming and nonlinear propagation e�ects,� The Journal of

the Acoustical Society of America, vol. 134, no. 5, pp. 3931�3942, 2013.

[9] N. J. Nchejane, �Soliton-like humps on the surface of magnetic �uids,� 2008.

25


	INTRODUCTION
	PROBLEM STATEMENT
	FINITE DIFFERENCE METHOD
	DERIVATION OF THE FINITE DIFFERENCES
	NEWTON-RAPHSON METHOD
	VON NEUMANN STABILITY ANALYSIS


	RESULTS
	DISCUSSION
	CONCLUSION


	PYTHON CODES FOR THE GRAPHICAL SOLUTIONS

