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Abstract

Natural killer (NK) cells are known to constitute a major part of innate immunity against

tumors and viral infections. Upon successfull viral entry into the tumor microenvironment

(TME) or tumor, NK cells may however prematurely kill infected tumor cells and oncolytic

viruses (OV), which then results in reduced overall efficacy of oncolytic virotherapy. In

this thesis, we examine the effects of NK cell recruitment within the TME during tumor

treatment with OV. To achieve this, we devised and analyzed a simple mathematical

model that describes the dynamic interactions of the tumor cells, OV and NK cells based

on currently available preclinical and clinical literature. In particular, a central goal of this

work is to investigate and characterize therapeutic conditions under which the synergistic

balance between OV-induced NK responses and required viral cytopathicity may or may

not result in a successful treatment. Interestingly, we found that NK cell recruitment to

the TME must take place neither too early nor too late in the course of OV infection so

that treatment will be successful. Notably, we also found that NK cell responses are most

influential at either early (partly because of rapid response of NK cells to viral infections

or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic

virotherapy. The model further predicts that: (a) an NK cell response augments oncolytic

virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates

tumor growth; and (c) the depletion of activated NK cells within the TME enhances

the probability of tumor escape in oncolytic virotherapy. Taken together, our findings

demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also

to induce potent NK cell response necessary to achieve complete or at least partial tumor

remission. Furthermore, our modeling framework supports combination therapies involving

NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several

cancer types.
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Chapter 1

Introduction

In the past decade, there has been a commendable progress in understanding of manifold

mechanisms and pathways that influence tumor growth and progression, and the molecular

networks that orchestrate the immune system’s response to tumor development [3]. Tumors

often develop various mechanisms to evade immune system detection and control [4–7]. As

one of the mechanisms to escape adaptive immune system, tumors often abrogate major

histocompatibility complex (MHC) class I molecules expressed on their cell surfaces [8–11].

This mechanism, however, renders tumor to natural killer (NK) cells cytotoxicity [12–14].

NK cells always serve as a first line of defense against invading infections or transformed

cells in contact-dependent manner via engagement of activating or inhibitory receptors

[15]. They can also lyse target cells via the production of cytotoxic granules and cytokines

[16]. Hence, NK cells are important cytotoxic lymphocytes of the innate immunity that

play a crucial role in immunosurveillance of tumors and viral infections [17]. Without loss

of generality, host immune system (both innate and adaptive parts) provides an important

surveillance against several tumor cells or viruses, and also contributes positively for many

cancer patients [17–21].

While it still remains a major challenge in immunotherapy to design effective therapeutic

agents that can consistently work against several cancer types [3], to date, several im-

munotherapeutic approaches have been developed [1, 3, 22–27]. These include immune

checkpoint (IC) inhibitors, combination of immunostimulatory cytokines (e.g., interleukin

12 (IL-12) and granulocyte monocyte stimulating factor (GM-CSF) [28–30]. In the past

10− 15 years, immunotherapy, particularly the use of immune checkpoint inhibitors (ICI),

1
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has triggered a keen interest in preclinical [31], clinical [32, 33] and mathematical re-

searchers [34] that seek to find better ways to improve immune system’s ability to combat

cancer development and progression. The use of immune checkpoints (IC) (often rep-

resented as inhibitory receptors) has been shown to elicit potent immunotherapeutic out-

comes in several preclinical and clinical models [35, 36]. Physiologically, IC control the lytic

ability of immune effector cells by enabling peripheral tolerance (e.g., via a programmed

death-1 (PD-1) receptor, expressed by T and NK cells, which binds to a PDL-1 ligand

often upregulated on tumor cells [35] or immune cells [33]). Furthermore, an increasing

evidence demonstrates that combining IC with OV can effectively result in more robust

and pronounced antitumor effects [32, 37].

Recently, oncolytic virotherapy has become one of promising therapeutic modalities that

showed favorable therapeutic outcomes in several clinical studies [38]. Oncolytic virother-

apy utilizes naturally-occurring viruses (e.g., reovirus [39, 40], (parvovirus (PV) [41]),

myxoma virus [42], Seneca valley virus [43], and Newcastle disease virus (NDV) [43, 44])

or genetically-engineered viruses (e.g., vesicular stomatitis virus (VSV)[45], measles virus

(MV) [45, 46], vaccinia virus [47], adenovirus (Ad) [48–50], herpes simplex virus (HSV)

[51–53]), that have a natural or genetically-engineered tropism to preferentially replicate

in, and kill cancerous cells while having no or limited effects on normal cells [43, 54–56].

Even though multiple oncolytic viruses (OV) have progressed to advanced clinical stages

[57], numerous obstacles or limitations still need to be addressed to attain improved thera-

peutic efficacy [38, 58, 59]. The current challenges in oncolytic virotherapy include, but are

not limited to, premature viral clearance by the circulating antibodies and several immune

cells [60], modest oncolytic viral amplification [61–63], and physical barriers within the

tumor microenvironment (TME) (e.g., extracellular matrix (ECM) components (such as

chondroitin sulfate proteoglycans (CSPGs) [64])) [44] or within tumors (e.g., interstitial

fluid pressure [65]).

Among many attractive attributes of OV therapy is the direct or indirect recruitment

(e.g., via immunogenic cell death (ICD) of infected tumor cells [66–69]) or stimulation of

antitumoral and antiviral immune cells, particularly NK cells [69], within the TME. While

within the TME, NK cells may act as a “double-edged sword” in the sense that, on the

one hand, activated NK cells can mount potent antiviral response that can diminish OV

spread and replication [48, 70]; while on the other hand, late antitumoral response by NK
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cells can provide robust antitumoral surveillance that may eliminate tumor cells [71–73].

The role of activated NK cells (recruited via ICD) in oncolytic virotherapy is currently

not fully explored [69, 74]. It is also, however, still not fully understood what is a relative

balance between direct viral oncolysis and indirect NK-mediated responses that can result

in improved overall efficacy of OV therapy [70, 75]. Undoubtedly, the determination of such

timely balance can immensely enhance our knowledge of OV replication and subsequent

viral oncolysis that can optimally result in better prognosis for many cancer patients.

Increasing evidence indicates that one other promising novel therapeutic strategy that can

create an effective antitumor response is a combinatorial therapy of replicating oncolytic

viruses and NK-based immunotherapy [71, 76]. Accumulating evidence further shows that,

in combination, OV and NK cells provide an effective antitumor response in several cancer

types [71–73]. Despite these promising therapeutic advances in treatment of various human

cancers, only a limited number of patients with life-threating cancers completely or partially

benefit from these available therapies. This is due to a complex and highly nonlinear

correlation between cancer and the immune system [70, 77–79]. Hence, to date, an effective

antitumor treatment against several cancer types still remains a major challenge [3, 70, 80].

1.0.1 Project Motivation

Due to the lack of precise information regarding the dynamic interaction between tumor

cells, OV and NK cells within the TME, in this thesis, we consider and investigate the

role of NK cells on uninfected and infected tumor cells during the treatment with OV.

In particular, we consider the lytic role of NK cells on tumor cells induced by varying

recruitment rates of OV infection. It is important to note that an early higher recruitment

rate of NK cells will result in increased number of NK cells within the TME, which may

ultimately lead to premature killing of infected tumor cells. In contrast, later higher

recruitment of NK cells can lead to increased NK-cell-mediated killing of OV-infected and

uninfected tumor cells, which will result in greater tumor remission and reduced number

of virus particles within the TME, and, thereby, improved antitumor effect of oncolytic

immunovirotherapy. With these considerations in mind, we are led to the following aims:

1. To formulate a novel ordinary differential equations (ODE) model that describes how
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NK cell recruitment to the TME affects oncolytic virotherapy. The model consists

of oncolytic viruses (OV), natural killer (NK) cells and tumor cells.

2. To characterize conditions under which the synergistic balance between OV-induced

NK responses and required viral cytopathicity may or may not result in a successful

treatment. We derive the basic reproductive number of the model and the steady

states solutions, and then use their joined stability analyses to assess the potential

success of OV-based therapy in the presence of active NK cells within the TME.

3. To simulate and compare the therapeutic efficacy of OV in the absence of and pres-

ence of NK cells. This comparison is important for assessing the possible treatment

outcomes of OV in immunocompetent hosts, where NK cells may either limit or

augment the therapy.

1.1 Outline of the Thesis

While a complete discussion of the major contributions of this thesis is presented in Chapter

3, we should re-emphasize that the work presented herein highlights the significance of

information characterizing virus-induced NK cell response during oncolytic virotherapy.

This thesis is structured as follows:

Chapter 2: Background Literature. Here, we present a brief overview of biological

aspects of tumor growth and of NK cell response to tumur growth and OV infection. We

also present a brief discussion of mathematical models that directly or indirectly motivated

our novel mathematical model developed in this thesis.

Chapter 3: Natural killer cells recruitment in oncolytic virotherapy: a math-

ematical model. We present a novel ordinary differential-equation mathematical model

that describes the dynamics of OV-induced NK recruitment to oncolytic viral infection.

We perform numerical simulations of the proposed model and discuss the corresponding

results. Interestingly, numerical simulations are comparable with previously published

models describing local interactions between tumor cells, activated NK cells and OV. In

summary, our simulations illustrate that while treating tumor with OV is a promising

therapeutic approach for eliminating tumors, it is equally important to recruit NK cells at

some stage during oncolytic virotherapy to achieve a complete tumor remission or at least
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a low controllable tumor steady state.

Chapter 4: Conclusions. We end this thesis by highlighting the major findings and

contributions of our study in the field of mathematical oncology. Finally, we present a

conclusion of the present work, and highlight possible future directions that can further

improve the results attained in this thesis.



Chapter 2

Background Literature

In this chapter, we present a brief overview of relevant tumor biology and appropriate

mathematical models that describe local interactions between tumor cells, natural killer

(NK) cells and oncolytic viruses. First, we provide a succinct discussion of appropriate

biology relating to tumor growth and innate immune system response mediated by NK

cells. In particular, we discuss the biological aspects pertaining to how tumor develops

in the presence of active innate immune system. Second, while there is ample literature

relating to tumor-immune-oncolytic virus dynamics, mathematical models discussed in this

chapter motivate the choice of our modeling techniques used in the subsequent chapter of

this thesis.

2.1 Biology of tumor growth and treatment

While tumor growth is a complex biological process that is governed by multiple mecha-

nisms that occur at the molecular, cellular, and tissue scales, in this section we provide a

brief review of tumor growth under attack by natural killer (NK) cells and treatment with

oncolytic viruses.

6
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2.1.1 Tumor treatment: Oncolytic virotherapy

Tumor growth and progression is a sophisticated biological mechanism that is defined by

a complex network of regulatory mechanisms of cellular growth and death. Hence treating

tumor requires a thorough understanding of theses biological processes and mechanisms. Of

particular interest, in this section we discuss one of the promising tumor treatments, namely

oncolytic virotherapy. Oncolytic viruses (OV) are viruses that specifically replicate in, and

kill tumor cells without harming (or having limited effect on) normal cells [43, 54, 55, 81–

84]. OV is a promising agent to treat cancer because it has a natural tumor tropism

or can be genetically engineered to replicate in cancerous cells [41, 56, 66, 85, 86]. OV is

usually administered intratumorally (i.e., directly injected into the tumor) or intravenously

(i.e., injected into the blood). While the intratumoral administration of OV minimizes

virus sequestration within the blood and maximizes viral load within a tumor, intravenous

administration is a common treatment protocol often used to treat various cancer types [87,

88]. Despite the promising outcomes of intravenous OV administration in treating various

metastatic tumors [89, 90], accumulating evidence indicates that systemic administration of

OV has many obstacles [91]. Upon injection into the blood system, OV becomes susceptible

to neutralization by circulating anti-bodies and/ or removal by virus-specific immune cells

[43, 89, 92]. In particular, NK cells known to rapidly eliminate OV [26, 72, 93, 94]. As

part of this thesis, we shall investigate the role of NK cell response that is triggered by OV

infection from a qualitative point view.

2.1.2 NK cells in tumor microenvironment

NK cells constitute an important part of effector immune cells of the innate immunity

that are able to quickly provide potent antitumor and antiviral responses against invading

pathogens or transformed cells in the body. NK cells are primarily known to both directly

kill tumor cells or virally infected cells [93, 95]. NK cells are also known to indirectly

communicate with other effector cells (such as T cells) within the tumor microenvironment

(TME) by releasing cytokines that activate cells of the adaptive immunity or other innate

immune cells (such as macrophages, neutrophils and dendritic cells) [95]. In this view,

the engagement of NK cells in the battle against tumor growth and development confer

NK cells as key innate immune cells that are capable of influencing immune-mediated
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cell-mediated cytotoxicity [96].

Usually, NK cells target and destroy cells not expressing self major histocompatibility

complex (MHC) class I molecules, through a molecular process known as “missing-self

recognition” [12–14, 97]. To carry out their innate immune functions, NK cells use a

large range of activating (such as natural cytotoxicity receptors (NCRs) – (e.g., NKp30

and NKp46 [95, 98])) and inhibitory receptors (such as human leukocyte antigen (HLA)-

specific inhibitory NK receptors (iNKR) – (e.g., KIRs and CD94/NKG2A [99, 100])) that,

upon their interactions with target cells (e.g., tumor cells or virus-infected cells) which

express respective cellular ligands, are able to kill or spare the target cell (see Figure 2.1

for examples of receptors and ligands that are used in NK cell-mediated surveillance). NK

cells rely on the balance between activating and inhibitory signals to engage with cognate

ligands on tumor cells [101].

In particular, NK cells eliminate tumor cells through secretion of cytolytic granules [13,

93, 100], such as perforin/granzyme, which usually bind to a target cell membrane, and

form lytic pores that are used to send through cytotoxic cytokines into the target cell

[102, 103]. Furthermore, by binding to the appropriate ligand, such as tumor necrosis factor

(TNF) family ligands, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL),

Fas ligand (CD178), NK cells are able to induce apoptosis into the target cells. NK cell

surveillance in tumor immunology has been demonstrated in various preclinical and clinical

models illustrating that a depletion in the number of NK cells within the TME is correlated

with poor prognosis [104].

In the context of oncolytic virotherapy, several preclinical and clinical studies have shown

that NK cells play two mutually opposite roles. On one hand, activated NK cells are

known to rapidly eradicate infected tumor cells, thereby limiting the spread of OV and

reduce overall efficacy of oncolytic virotherapy [48, 70, 71]. On the other hand, activated

NK cells have been shown to indispensably augment antitumoral activity of oncolytic

viruses [71–73]. Thus, NK cells, activated by oncolytic viruses, are important effector

immune cells necessary for successful overall therapy [72]. As an example, the antitumoral

and antiviral roles of NK cells in mice treated with a combination of oncolytic virus and

bortezomib, revealed that either reducing the number of endogenous NK cells or increasing

the number of exogenous NK cells leads to enhanced treatment outcomes [71]. More
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FIG. 2.1. Target killing or sparing by NK cells using activating and inhibitory receptors. Source
[1].

recently, Leung et al. [72] showed that ovarian cancer cells, infected with OV, activated

NK cells via a contact-dependent manner. It was further illustrated that the activated NK

cells provided an addition arm in antitumoral activity of OV against infected cancer cells.
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The combinatorial activities of OV and NK cells resulted in more potent killing of infected

ovarian cancer cells compared to OV administered as a standalone treatment [72]. Taken

together, these studies show that virus oncolysis and NK cell responses work cordially

in combat against tumor growth and progression. However, the distinct roles played by

activated NK cells in oncolytic virotherapy are still largely unexplored [105].

2.2 Mathematical models of tumor growth and treat-

ment with oncolytic viruses

From basic to advanced modeling approaches, several mathematical models that describe

various tumor-immune cell interactions have been developed [5, 106–110]. As an exam-

ple, numerical results in Mahasa et al. [5] indicate that an increment in the number of

activated NK cells within the tumor microenvironment might be essential to enhance NK-

mediated immune surveillance. Of note, it was further shown that immune response alone

is not sufficient to completely thwart tumor growth, and as such tumors often turn to

develop immunoresistance that abrogates immune surveillance. To date, there is a growing

need to develop better models (possibly motivated by, and calibrated with, experimen-

tal data [111]), despite the existence of rich knowledge of tumor-immune interactions (see

[19, 110, 112–114] for reviews of tumor-immune models). In the past decade, mathemat-

ical and computational models of tumor growth under treatment with oncolytic viruses

have received a significant interest in the development and evaluation of new approaches

to battle cancer. In particular, there are several mathematical models that illustrate how

to control tumor growth with oncolytic viruses, without immune response [115–119], and

with immune response [63, 75, 120–123]. For example, Kim et al. [71] developed and in-

vestigated antitumoral and antiviral roles of NK cells in a triple combination therapy with

oncolytic virus and bortezomib. Of note, they showed that either reducing the number

of endogenous NK cells or increasing the number of exogenous NK cells leads to better

treatment outcomes.
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2.3 Summary

In this chapter, we provided a brief literature review of both tumor biology and mathemat-

ical models of tumor-immune interactions, and those of tumor treatment with oncolytic

viruses. Of note, this short literature review provides a basic view of a long journey and

continued battle in preclinical, clinical and mathematical oncology research, as well as

the need for better comprehension of complex tumor-immune-oncolytic virus interactions.

While many of the mathematical models discussed above are mostly deterministic in na-

ture (usually defined by systems of ordinary differential equations (ODEs)), in the present

study we adopt and consider similar ODE-based approach to describe various aspects of

tumor-immune-virus dynamics. We start off with a relatively complex ODE system, and

then deconvolute it to determine the most essential dynamical processes that govern tumor

growth in oncolytic immunovirotherapy. While mathematical modeling approaches have

enhanced our understanding of the complex dynamics of tumor progression or remission

under various treatment modalities, there is still a need for better approaches to precisely

define various mechanisms in oncolytic immnunovirothrapy. In the next chapter, we will

provide a simple overview of tumor-immune-virus interactions that might help to eliminate

or at least control tumor growth. In particular, since NK cells (as part of innate immune

system) may be a major obstacle or an enhancer of the success of oncolytic virotherapy,

we will devise and analyze our mathematical model to assess the effect of NK cells within

the TME during oncolytic virotherapy.
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Mathematical modeling of natural
killer cells recruitment in oncolytic
virotherapy

Oncolytic virotherapy has shown promising antitumoral effects in variety of preclinical

tumor models [62, 63, 72, 82, 124] and recently in clinical studies [57–59, 125]. This

treatment approach makes use of an oncolytic virus (OV) that selectively replicates to

kill cancer cells while sparing healthy normal cells. In addition, OV stimulates a potent

immune response to the virus-infected and uninfected tumors [43, 50, 62, 63, 126, 127]. OV,

however, when administered intravenously in immunocompetent hosts, is often prone to

immune cell clearance which reduces the likelihood of virotherapeutic success [65, 72, 128].

There are more than ten types of immune cells that are known to play a vital role in

oncolytic virotherapy, such as viral-tumor specific T cell (CTL) [129], natural killer (NK)

cells [53, 128, 130], and tumor-associated macrophages [131]. Immune cell depletion studies

show that both NK and CTL cells are essential to the therapeutic effect of OV [132]. In

this study, we only consider the emerging role of NK cells in oncolytic virotherapy because

their dual and counter-intuitive contributions require deeper examination [72].

NK cells are a type of cytotoxic lymphocyte critical to the innate immune system that have

the ability to rapidly eliminate invading pathogens, such as viruses, or transformed cells,

such as cancerous cells, in the body [26, 72, 93]. In the context of oncolytic virotherapy, NK

cells are known to mediate both antiviral and antitumoral responses [72, 94]. Nonetheless,

12



Chapter 3. NK cells recruitment: Oncolytic virotherapy 13

an appropriate balance between rapid viral elimination (or clearance) of OV-infected cells

by NK cells and the later antitumoral NK cell response is still not yet fully understood [70,

75]. It should be noted that the efficacy of oncolytic virotherapy in immunocompetent hosts

depends heavily on this balance [58, 59, 70, 75, 125, 133]. Upon successful entry into tumor

cells, OV replicates within infected cells, which may release pathogen-associated molecular

patterns (PAMPs) (e.g., calreticulin (CRT) ecto-expression and adenosine triphosphate

(ATP) [134–136]), as well as damage-associated molecular patterns (DAMPs) (e.g., high-

mobility group box 1 (HMGB1) protein, heat shock proteins (HSP70,HSP90) [136, 137]).

The presence of PAMPs or DAMPs indicates that a cell is undergoing immunogenic cell

death (ICD) induced by oncolytic viruses [27, 66]. Moreover, these danger signals released

during ICD can be rapidly recognized by the innate immune cells, and can activate the

innate immune response, including NK cells [68, 69, 74, 136]. Although NK cells have been

shown to play a significant role in the context of ICD [138], the recruitment of NK cells

via ICD still requires further investigation, especially in OV-based treatments [69, 74].

The cytolytic activity of NK cells against OV-infected or uninfected tumor cells is regulated

by the engagement of either activating or inhibitory NK cell surface receptors, the actions

of cytokines, and cross talk with other immune cells [13, 26, 98, 139]. Upon binding with

their respective ligands expressed on surfaces of tumor cells, the receptors on NK cells

become activated [26, 94, 140, 141]. This activation triggers an intracellular signaling

process, through a complex cascade of phosphorylation reactions [141, 142], which leads to

NK cell activation and possible NK cell-mediated tumor cell lysis [13, 98, 141].

NK cells play a major role against viral infections, and are known to indiscriminately

attack both uninfected and OV-infected tumor cells rapidly [72, 143]. This rapid clearance,

however, may limit the spread of OV and hence diminish overall oncolytic virotherapeutic

efficacy [48, 70, 71]. While numerous studies have shown that NK cell responses halt

OV spread and infection [70, 95], there is ample evidence indicating that virus-induced

NK cell responses can lead to indispensable augmentation of oncolytic virotherapy [71–

73]. For example, Kim et al. [71] investigated, through an experimental-mathematical

modeling approach, the antitumoral and antiviral roles of NK cells in a triple combination

therapy with oncolytic virus and bortezomib. They showed that variations in the number

of NK cells within the tumor microenvironment (TME) (e.g., either reducing the number

of endogenous NK cells, or increasing the number of exogenous NK cells), led to improved
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treatment efficacy. Recently, in [72], the synergistic role of NK cells in the activity of two

different oncolytic adenoviruses was examined. The study showed that infected ovarian

cancer cells activated NK cells in a contact-dependent manner. Moreover, the activated

NK cells significantly augmented the killing of infected cancer cells by the OV, where

the NK cells were in direct contact with the OV-infected cancer cells. This interaction

of NK cells and infected tumor cells resulted in more significant cell killing compared

to OV infection alone [72]. Taken together, these studies imply that there is a complex

trade-off underlying virus oncolysis and OV-induced NK cell responses. Thus, it is vital

to understand the role of NK cell-mediated responses in oncolytic virotherapy [70]. As

will be demonstrated by our model, this balance depends on how rapidly the productively

infected tumor cells die from OV infection (viral cytopathicity) (i.e., we compare strongly

cytopathic vs. weakly cytopathic OV) [2, 80] and the immunostimulatory ability of OV in

recruiting NK cells to the TME.

There are several mathematical models of the interactions of the OV, tumor cells and

immune responses (see for example [75, 144–146]) and of the effects of the immune response

on oncolytic therapy (see [63, 75, 146]). To date, there is a wide variety of mathematical

models in virotherapy, ranging from ordinary differential equations (ODEs) [75, 120, 123,

147], partial differential equations (PDEs) [148], multi-scale models [149], to agent-based

[150] and stochastic processes models [151]. In the present study, we consider the ODE

modeling framework which normally assumes that tumors and OV are perfectly mixed. We

follow this approach for two reasons: (i) ODE models are usually analytically tractable, and

basic insights gained from such models can easily be validated with experimental data. (ii)

when modeling virus dynamics, ODE models often provide a basic understand of tumor-

virus dynamics which can easily be extended to more complex spatial scenarios. Although

the diverse roles of NK cells regulation have been investigated in several mathematical

models (see Watzl et al. [130] for a review), the dynamical interactions of OV-induced NK

cell recruitment during oncolytic virotherapy have not been fully explored [105].

Thus, we develop what we believe to be the first simple mathematical model of the dy-

namical interactions between OV, tumor cells, and activated OV-induced NK cells within

the TME. Our aim in this work is to gain insights into the dynamics of the tumor and the

OV-induced NK cell responses via a mathematical model employing a system of nonlinear

ordinary differential equations.
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The chapter is organized as follows. In section 3.1, we formulate the immunocompetent

model and describe the underlying assumptions. In section 3.2, we present the linear stabil-

ity analysis, basic reproductive number and local sensitivity index of endemic equilibrium.

Global parameter sensitivity analysis is presented in section 3.5. Results of the numerical

simulations are detailed in section 3.6. In section 3.7, we discuss the significance of the

results and suggest future directions for OV-NK combination therapies.

3.1 Model formulation

In this section, we formulate a new simple ODE-based mathematical model describing the

local interactions between tumor cells, OV and the NK cells. The quantities of interest

in the model are the concentration of the uninfected tumor cells, Tu (cells), the infected

tumor cells, Ti (cells), NK cells, N (cells), and oncolytic viruses, V (PFU/cell). Here,

we use plaque-forming units (PFU) for V . PFU is a generally accepted measurement for

infectious OVs, whereby non-infectious (defective) viruses that are not able to form plaques

are excluded when counting the plaque-forming units [75]. The non-infectious viruses are

not able to infect tumor cells; hence they are excluded when measuring the PFU. The

summary of the model parameters, their meaning and base values are given in Table 3.1.

3.1.1 Model equations

We propose the following immunocompetent system of ordinary differential equations

(ODEs) based on Fig. 3.1:
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FIG. 3.1. A schematic diagram of the local interactions between tumor cells, OV and NK cells.
Uninfected tumor cell (Tu) proliferates and undergoes natural death. Oncolytic viruses (V ) are
injected into the system at time t from an appropriate injection site according to a function µv.
Upon infection, uninfected tumor cells become infected cells (Ti) following productive entry of the
virus. Infected cells also undergo lysis and release more free infectious viruses. There is a constant
influx (sN ) of NK cells (N) into the tumor microenvironment. NK cells become activated due to
immunogenic cell death (ICD) of infected tumor cells, leading to additional recruitment of NK
cells. Moreover, NK cells kill tumor cells and clear free viruses. Finally, NK cells undergo natural
death.

dTu
dt

= αTu

(
1− Tu + Ti

θT

)
︸ ︷︷ ︸

tumor proliferation

− βTuV︸ ︷︷ ︸
virus infection

− cTuNTu︸ ︷︷ ︸
killed by NK cells

(3.1)

dTi
dt

= βTuV︸ ︷︷ ︸
virus infection

− δTi︸︷︷︸
lysis

− cTiNTi︸ ︷︷ ︸
killed by NK cells

(3.2)

dV

dt
= µv(t)︸ ︷︷ ︸

virus injection

+ bTi︸︷︷︸
released by Ti death

− dVNV︸ ︷︷ ︸
killed by NK cells

(3.3)

dN

dt
= sN︸︷︷︸

NK cell influx

+ ξNN

(
1− N

θN

)(
Ti

kN + Ti

)
︸ ︷︷ ︸
NK cell activation and saturation, and

recruitment after infected cell death

− σ (Tu + Ti)N︸ ︷︷ ︸
NK cell inactivation

− dN︸︷︷︸
death

(3.4)
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where sN and kN are the constant influx of NK cells from the lymph node and the half-

maximal constant which supports the NK cell activation and recruitment by immunogenic

infected tumor cell death, respectively. NK cells are known to be non-specific and attack

“non-self” cells as compared with CD8+ T cells that have to be primed to attack a specific

target. It is, however, also important to note that NK cells can rely on similar signaling

pathways to those of T cells that enable them to become fully functional [130], and that

NK cells can be specific or non-specific during oncolytic virotherapy [128]. We should

emphasize that we assume there is a pre-existing NK cell population (sN) within the tumor

vicinity which, within hours post infection [105], is recruited to the TME and mediates

initial OV clearance. In this study, “activation of NK cells” means stimulation (e.g., via

multiple stimulatory receptors (such as CD16 and NKp46 [152, 153]) often expressed on

NK cell surface) and local expansion (proliferation) of NK cell population within the TME

[13]. Note also that, for simplicity, our model does not account for subcellular events and

stimulatory pathways leading to activation of NK cells as modeled in [141]. We complete

the system with the following non-negative initial conditions:

Tu(0) = Tu0 cells, Ti(0) = 0 cells, V (0) = 0 virions, N(0) = N0 cells, (3.5)

As in previous models [75, 123], OV injection into the system is modeled using a delta

function µv(t) = µv(0)∆(t− τ), which accounts for an amount µv(0) of viruses injected on

a specified day (τ), and ∆ is the Dirac delta function [75]. Here we follow the experiments

in [42], where µv(0) = 5 × 106 PFU is injected into the system on day τ(e.g., τ = 19). A

detailed description of the model is as follows:

In Eq. (3.1), the first term, αTu

(
1− Tu+Ti

θT

)
, denotes that in the absence of OV infection

and NK response, the uninfected tumor cells grow logistically [75, 154], up to the carrying

capacity θT , with the growth rate α. The second term, −βTuV , denotes the productive

infection of uninfected tumor cells by OV with the constant rate β. Note that we have

used the mass action kinetics to model OV-tumor interactions because we assume that OV

interacts with tumor cells at the rate that is proportional to the total number of uninfected

tumor cells within the TME. Thus, we implicitly assume that there is no multiple infection

of tumor cells (i.e., no tumor cell can be infected several times by an OV). It is, however,

conceivable that tumor architecture can obstruct viral replication and propagation [155],
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and in such cases other kinetics such as frequency-dependent or Michaelis-Menten kinetics

can be considered to model OV-tumor interactions. Moreover, we assume that NK cells

are able to recognize tumor antigens as well as viral antigens, not the virus inside of the

infected cells; hence NK cells indiscriminately kill tumor cells independent of their infec-

tion status [143]. We assume NK cells kill tumor cells at different rates. Indeed, the NK

cell killing rates can be tumor-specific or virus-specific due to diverse stimulatory ligands

in tumor cells or virus-derived tumor antigens which is recognized by NK cells [142, 156].

Upon their interactions with activated NK cells, denoted by the term cTuNTu, uninfected

tumor cells are killed by NK cells at a constant rate cTu .

In Eq. (3.2), the proportion of newly infected tumor cells is denoted by the first term βTuV .

The OV-induced cell death of infected tumor cells is denoted by the second term −δTi,
where δ is the constant lysis rate. Note that the infected cells are assumed to be lysed

by OVs within a short period of time. Thus, we assume no growth law for the infected

cell population, a common assumption in models of tumor-virus dynamics [2, 118, 151].

The last term, −cTiNTi, denotes the killing of infected tumor cells by NK cells with the

constant rate cTi .

In Eq. (3.3), OV injection into the system is administered through the function µv(t) dis-

cussed above. When an infected tumor cell dies, it releases new infectious viral progeny

which proceed to infect other susceptible tumor cells [48, 70]. The second term, bTi, de-

notes that upon successful viral replication, OV are released from infected tumor cells at

the constant burst size b. Free viruses within the TME are cleared by circulating immune

effector cells [157] such as natural killer (NK) cells and activated cytotoxic T lymphocytes

(CTLs), and/or non-specific immune-induced responses [158]. Note also that while there

are several antiviral immune cells, in this study, for simplicity we assume that the ma-

jority of viral clearance is mediated by NK cells. In addition, we assume that oncolytic

virotherapy is only effective when the rate of OV replication is greater than the rate of OV

clearance [70, 137]. The last term −dVNV denotes the viral clearance of free OV within

the TME by NK cells at the constant rate dV .
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In Eq. (3.4), the first term, denotes that as part of the innate immunity, NK cells are

assumed to be always present within the TME, and are supplied from the lymph node at

a constant rate, sN , into the TME [5, 132, 154, 159]. Although the NK cells can directly

be activated by free viruses within the TME, as modeled in [34], in this study we assume

that activation of NK cells is dependent on contact with OV-infected tumor cells, as ex-

perimentally observed in [72]. The second term, ξNN
(

1− N
θN

)(
Ti

kN+Ti

)
, represents the

stimulation and recruitment of NK cells. Note that we have used a saturated term Ti
kN+Ti

to describe the limited effector effects of NK response on tumor killing, which accounts for

reduced lysis of tumor cells by NK cells [160]. We also assume that NK cell response is

further enhanced by lysis, which induces immunogenic cell death (ICD) [67, 127, 161, 162],

of infected tumor cells at the rate ξN until it attains the maximum capacity θN (since

the body can only support a limited number of activated immune cells; otherwise, a large

number of activated immune cells could trigger a cytokine storm [163]). In the present

study, for simplicity, we shall not consider a cascade of subcellular interactions or precesses

leading to activation and recruitment of NK cells via ICD, but rather assume that there is

an additional recruitment of NK cells to the TME due to ICD. While it is also conceivable

that local interactions between the immune effector cells and tumor cells ultimately (or at

least transiently) lead to immunogenic tumor cell death [111, 119], in this study we are

mostly interested in OV-induced immunogenic tumor cell death. Instead of directly model-

ing the danger signals (such as DAMPs and PAMPs) released during ICD, we use the fact

that these signals are over-expressed on the cell surfaces of OV-infected cells or released

by the OV-infected cells [70, 134–136]. We therefore use the infected cell population as

a proxy for modeling the actions of ICD. Parameter ξN is the recruitment/proliferation

of NK cells in response to danger signals (such as DAMPs and PAMPs) released during

ICD of OV-infected tumor cells. For simplicity, immunogenic infected tumor cell death is

embedded into the recruitment rate, ξN (i.e., ξN = riδ, where ri and δ are the antigenic

recruitment and OV-induced cell death rates, respectively). Parameter kN represents the

half-saturation constant of NK cells that supports the maximum killing of tumor cells by

NK cells. The interactions of NK cells with tumor cells can lead to inactivation of NK cells

at a constant rate, σ, that is proportional to their interactions [5, 154, 164]. Thus, the

third term, −σ (Tu + Ti)N , denotes the inactivation of NK cells upon their interactions

with tumor cells with the rate σ. Finally, the last term, dN , denotes the natural death of

NK cells with the constant rate d.
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We should emphasize that while CTLs and other immune cells play important antitumoral

and antiviral roles in oncolytic virotherapy, by not modeling them in our study does not,

in anyway, disregard their vital therapeutic effects against tumors, but simply means that

the only tumor death occurring will be as a result of NK cell interactions. The summary

of the model parameters, their meaning and base values are given in Table 3.1.

TABLE. 3.1. Summary of parameter definitions, values and their sources. A detailed description
of how these parameters were obtained is found in Appendix 3.6.

Parameter Description Baseline value or Range References
α Proliferation rate of uninfected tumor cells 0.31 day−1 [63]
θT Carrying capacity of tumor cells 1.47× 108 (107 − 109) cells [34]
β Infection rate of uninfected tumor cells by free viruses 8.9× 10−4 (PFU−1)(day−1) [63, 144]
cTu Killing rate of uninfected tumor cells by NK cells 8.68× 10−10 (cells−1)(day−1) [63]
cTi Killing rate of infected tumor cells by NK cells 8.68× 10−10 (cells−1)(day−1) [63]
δ Lysis rate of infected tumor cells 1.5 day−1 [165]
b Viral burst size of a lysed infected tumor cell 103(10− 1, 350) (PFU)(cells−1)(day−1) [166]
ξN Recruitment rate of NK cells via ICD by infected cells 1× 10−5 day−1 [167]
θN Maximum capacity for NK cell production 6.63× 1010 cells [168]
kN Half-saturation constant of infected tumor cells 104 cells [34]
σ Inactivation rate of NK cells by tumor cells 1.0× 10−7 (cells−1)(day−1) [63, 159]

γ = dV Viral clearance rate 2.3 day−1 [63, 144]
d Natural death rate of NK cells 4.12× 10−2 day−1 [5, 159]
sN Constant influx of NK cells 3.2× 103 − 3.2× 104 (cells)(day−1) [5]

3.2 Model analysis

To begin our analysis, we first examine the immune-free submodel, that is, in the absence

of the immune response. The objective of this analysis is to investigate conditions and

parameters that can impact the attainment of a tumor-free state with oncolytic virotherapy

in the absence of NK cells intervention. We use both linear stability analysis and basic

reproductive number to get a better understanding of how tumor elimination may depend

on OV characteristics.

To assess how model parameters impact tumor progression and their relative significance

to the therapeutic outcome, we also carried out a forward local sensitivity index analysis of

the virus basic reproductive number, R0, and the tumor endemic equilibrium with respect

to the model key parameters. We first derive the model basic reproductive number, R0,
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and then calculate its elasticity indices with respect to the model parameters to identify

which of them are most sensitive during tumor infection.

We later assess the effect of NK cell response in oncolytic virotherapy by exploring the

qualitative behavior of the models numerically. The respective findings of the immuno-

competent model and immune-free submodel will be crucial for comparative purposes when

assessing our model predictions in oncolytic virotherapy treatment.

3.2.1 The immune-free submodel

In the absence of the NK cell intervention, model system 3.1.1 is reduced to:

dTu
dt

= αTu

(
1− Tu + Ti

θT

)
︸ ︷︷ ︸

tumor proliferation

− βTuV︸ ︷︷ ︸
virus infection

(3.6)

dTi
dt

= βTuV︸ ︷︷ ︸
virus infection

− δTi︸︷︷︸
lysis

(3.7)

dV

dt
= µv(t)︸ ︷︷ ︸

virus injection

+ bTi︸︷︷︸
released by Ti death

− γV︸︷︷︸
clearance

. (3.8)

3.3 Nondimensionalization

To begin our analysis, we first non-dimensionalize the full model described by Eqs. (3.1)–(3.4),
by rescaling time with δ−1, the half-life of the infected tumor cell population (as in [122]), the
tumor cell populations with θT , the carrying capacity of tumor cells (as in [159, 169]), oncolytic
viruses with b, the viral burst size of infected tumor cells (as in [118]), and the NK cells with
θN , the maximum carrying capacity for the activated NK cells. Let T̂u, T̂i, V̂ and N̂ denote
dimensionless variables corresponding to the dimensional state variables of our model. Then,
T̂u = Tu

θT
, T̂i = Ti

θT
, V̂ = V

θT
, N̂ = N

θN
, t̂ = δt. Then substituting into Eqs. (3.1)–(3.4), for

convenience, we drop all the hats over the state variables and time to obtain the dimensionless
system (3.9–3.12) with Eq. (3.13).
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dTu
dt

= rTu (1− Tu − Ti)− λvTuV − cTTuN (3.9)

dTi
dt

= λvTuV − Ti − cTV TiN (3.10)

dV

dt
= Iv(t) + ρTi − cV V N (3.11)

dN

dt
= fN + aNN (1−N)

(
Ti

hN + Ti

)
− η (Tu + Ti)N − κNN, (3.12)

with initial conditions

Tu(0) = Tu0, Ti(0) = 0, V (0) = 0, N(0) = N0, (3.13)

where: r = α
δ , λv = βθT

δ , cT = θN
δ , κN = d

δ , I(t) = µv(t)
δb , ρ = θT

δ , ωv = γ
δ ,

Tu0 = Tu0
θT
, cTV = θN

δ , aN = ξN
δ , η = σθT

δ , hN = kN
θT
, cV = θN

δ , fN = sN
δb , N0 = N0

θN
.

The dimensionless system of the immune-free submodel (Eqs. (3.6)–(3.8)) is given by

dTu
dt

= rTu (1− Tu − Ti)− λvTuV (3.14)

dTi
dt

= λvTuV − Ti (3.15)

dV

dt
= Iv(t) + ρTi − ωvV, (3.16)

with the initial conditions

Tu(0) = Tu0, Ti(0) = 0, V (0) = 0. (3.17)

3.4 Basic properties of solutions

The proposed model describes the temporal evolution of cells and virus populations, and therefore,
the cell concentrations should remain nonnegative and bounded. Here, we only establish the well-
posedness of the immune-free submodel (Eqs. (3.6)–(3.8)). The well-posedness theorem is stated
below with its corresponding proofs.

Theorem 1 Well-posedness

(i) (non-negativity of solutions) Given that the non-negative initial conditions (Tu0 > 0, Ti0 >
0, V0 > 0), the corresponding solutions (Tu(t), Ti(t), V (t)) will remain non-negative for all
t ∈ [0,∞).
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(ii) (boundedness of solutions and invariant region) The model system is bounded and the in-
variant region is given by

ΩV = {(Tu, Ti, V ) ∈ R3
+ | 0 6 Tu 6 θT , 0 6 Ti 6

1

δ
βTuV, 0 6 V 6

1

γ
(µv(t) + bTi)}

(3.18)

Moreover, the domain ΩV is positively invariant for the model and therefore biologically
meaningful for the cell concentrations and regarded as a “global” domain. The corresponding
dimensionless system, Eqs. (3.14)–(3.16), is valid under the following positively invariant
domain:

ΩV1 = {(Tu, Ti, V ) ∈ R3
+ | Tu ≥ 0, Ti ≥ 0, 0 6 Tu + Ti 6 1, V ≥ 0}. (3.19)

(iii) (existence and uniqueness) For any non-negative initial values of the model state variables,
a solution to the model exists and is unique in the positively invariant domain ΩV for all
time t > 0.

3.4.1 Proof of the well-posedness theorem

Here we provide a detail discussion of the well-posedness of our immune-free submodel (see
Eqs. (3.6)–(3.8)), and a brief outline for extending the solutions to our immunocompetent system
(see Eqs. (3.1)–(3.4)).

(i) Non-negativity of solutions

Proof. Considering Eq. (3.6), we have a Bernoulli differential equation. We now rewrite Eq. (3.6)

as dTu
dt = αTu − αT 2

u
θT
− αTuTi

θT
− βTuV =

(
α− αTi

θT
− βV

)
Tu − αT 2

u
θT
. Thus, the Bernoulli standard

form of Eq. (3.6) is dTu
dt +

(
βV + αTi

θT
− α

)
Tu = −αT 2

u
θT

. Here, n = 2, P (t) = βV + αTi
θT
− α,

Q(t) = − α
θT

. The integrating factor is I(t) = e
∫

(1−2)
(
βV+

αTi
θT
−α
)
dt

= e
−
(
βV+

αTi
θT
−α
)
t
. The

solution is therefore given by: T−1
u = e

(
βV+

αTi
θT
−α
)
t
[∫

(−1)
(
− α
θT

)
e
−
(
βV+

αTi
θT
−α
)
t
dt+ c

]
=

e

(
βV+

αTi
θT
−α
)
t
[
α
θT

∫
e
−
(
βV+

αTi
θT
−α
)
t
dt+ c

]
= ent

[
− α
θTn

e−nt + c
]
, where n = βV + αTi

θT
− α =

− α
θTn

+ cent.

At t = 0, Tu = Tu0, solving for c we obtain c = Tu0 + α
θTn

. Now substituting c in the equation for
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T−u 1 above, we get T−u 1 = (θTnTu0+α)ent−α
θTn

., and thus,

Tu =
θTn

(θTnTu0 + α) ent − α

=
θT

(
βV + αTi

θT
− α

)
(
θTTu0

(
βV + αTi

θT
− α

)
+ α

)
e

(
βV+

αTi
θT
−α
)
t − α

> 0.

Considering Eq. (3.7), we have a first-order ODE which can easily be written as dTi
dt +δTi = βTuV .

Using the following integrating factor I(t) = e
∫
δdt = eδt, and solving we get, Ti = 1

δβTuV +ce−δt.
At t = 0, Ti(t) = 0, solving for c we obtain c = −1

δβTuV. Substituting c in the equation of Ti
above we get Ti = 1

δβTuV −
1
δβTuV e

−δt = 1
δβTuV

(
1− e−δt

)
> 0.

Similarly, considering Eq. (3.8), we have a first-order ODE which can be rewritten as dV
dt + γV =

µv(t) + bTi. The integrating factor is given by I(t) = e
∫
γdt = eγt, which is used to solve for

V = 1
γ (µv(t) + bTi) + ce−γt. At t = 0, V (t) = 0, solving for c we obtain c = − 1

γ (µv(t) + bTi).

Substituting c in the equation of V above we get V = 1
γ (µv(t) + bTi)(1− e−γt) > 0.

(ii) Boundedness of solutions and invariant region

In this section, we discuss the boundedness of the solutions of our model.
For the uninfected population, Eq. (3.6) can be rewritten as

dTu
dt

= αTu −
αT 2

u

θT
− αTuTi

θT
− βTuV.

From which we have

dTu
dt

6 αTu −
αT 2

u

θT

=
θTαTu − αT 2

u

θT

=⇒ θTdTu
θTαTu − αT 2

u

6 dt

θTdTu
αTu(θT − Tu)

6 dt (3.20)

Integrating the left hand side of Eq. (3.20) using partial fractions, we have

1

Tu(θT − Tu)
=

A

Tu
+

B

θT − Tu
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Comparing coefficients and solving for A and B, we get A = 1
θT

and B = 1
θT

. So

1

Tu(θT − Tu)
=

1

θTTu
+

1

θT (θT − Tu)
.

Integrating the above yields

1

θT
(ln(Tu)− ln(θT − Tu)).

So the integral for Eq. (3.20) is

θT
α

(
ln(Tu)

θT
− ln(θT − Tu)

θT

)
6 t+ c.

At t = 0, Tu = Tu0

c =
θT
α

(
ln(Tu0)

θT
− ln(θT − Tu0)

θT

)
,

so

θT
α

(
ln(Tu)

θT
− ln(θT − Tu)

θT

)
6 t+

θT
α

(
ln(Tu0)

θT
− ln(θT − Tu0)

θT

)
1

α
(ln(Tu)− ln(θT − Tu)) 6 t+

1

α
(ln(Tu0)− ln(θT − Tu0))

ln(Tu)− ln(θT − Tu) 6 αt+ ln(Tu0)− ln(θT − Tu0)

ln

(
Tu

θT − Tu

)
6 αt+ ln

(
Tu0

θT − Tu0

)
ln

(
Tu

θT − Tu

)
− ln

(
Tu0

θT − Tu0

)
6 αt

ln

(
Tu(θT − Tu0)

Tu0(θT − Tu)

)
6 αt

Tu(θT − Tu0)

Tu0(θT − Tu)
6 eαt

Tu(θT − Tu0) 6 eαtTu0(θT − Tu)

= eαtTu0θT − eαtTuTu0

Tu(θT − Tu0) + eαtTuTu0 6 eαtTu0θT

Tu((θT − Tu0) + eαtTu0) 6 eαtTu0θT

Tu 6
eαtTu0θT

eαt

eαt (θT − Tu0) + eαtTu0

=
Tu0θT

(θT−Tu0)
eαt + Tu0

.
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Taking the limit supremum on both sides, we have

lim sup
t→∞

Tu 6 lim sup
t→∞

Tu0θT
(θT−Tu0)

eαt + Tu0

=
Tu0θT
Tu0

= θT , which is the upper bound for Tu.

Now, considering the infected tumor cell population, re-writing Eq. (3.7) leads to

dTi
dt

+ δTi = βTuV,

which is now in first order linear standard form and its solution is given by

Ti =
1

δ
βTuV

(
1− e−δt

)
.

Taking limits on both sides of the above equation,

lim sup
t→∞

Ti = lim
t→∞

1

δ
βTuV

(
1− e−δt

)
6 lim

t→∞

1

δ
βTuV

=
1

δ
βTuV, Which is the upper bound fot Ti.

For the virus population, Eq. (3.8) can be rewritten as

dV

dt
+ γV = µv(t) + bTi,

which gives rise to the solution

V =
1

γ
(µv(t) + bTi)

(
1− e−γt

)
.

Taking limits on both sides of the above equation,

lim sup
t→∞

V = lim
t→∞

1

γ
(µv(t) + bTi)

(
1− e−γt

)
6 lim

t→∞

1

γ
(µv(t) + bTi)

=
1

γ
(µv(t) + bTi), which is the upper bound for V .

We can therefore conclude that the system above is bounded and the invariant region is given by

ΩV =

{
(Tu, Ti, V ) ∈ R3

+ | 0 6 Tu 6 θT , 0 6 Ti 6
1

δ
βTuV, 0 6 V 6

1

γ
(µv(t) + bTi)

}
.
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Note that ΩV is a positively invariant domain for the system (Eqs. (3.6)–(3.8)). Moreover, notice
also that 0 ≤ Tu(t) + Ti(t) ≤ θT for t > 0. This shows that the total tumor burden Tu(t) + Ti(t)
cannot exceed the carrying capacity θT . This proof is analogous to the proof in Appendix A of
Dingli et al. [170]. ΩV is also a biologically feasible region for the state variables. Hence, we
shall also regard this region as a “global” domain.

(iii) Existence and uniqueness of solutions

Proof. Since the right-hand side of system is C1 (class of continuously differentiable functions)
satisfies the properties of locally Lipschitz functions, then the existence and uniqueness of solu-
tions of the system is ascertained by the Cauchy-Lipschitz theorem [171, 172].

For the immunocompetent model (see Eqs. (3.1)–(3.4)), it is not difficult to establish that the
solutions will remain non-negative for t ≥ 0 since dN

dt ≥ 0 whenever N(t) = 0 and N(t) ≥ 0, Also
it can easily be verified that N is bounded by 0 ≤ N ≤ sN

d . Thus, we define the invariant region
for the system (Eqs. (3.1)–(3.4)) as

ΩVN =

{
(Tu, Ti, V,N) ∈ R4

+ | 0 6 Tu 6 θT , 0 6 Ti 6
1

δ
βTuV, 0 6 V 6

1

γ
(µv(t) + bTi), 0 ≤ N ≤ sN

d

}
.

Hence, the existence and uniqueness of solutions theorem for our immunocompetent model is
preserved. Note that the right hand side of our immunocompetent system is C1 on R4

+.

The non-negativity and boundedness of the immunocompetent model directly follow from the
same type of logical arguments presented here and hence we omit their proofs.

3.4.2 Steady state analysis

Here we find the equilibria of the non-dimensionalized system, which occur at the intersections of
the tumor and OV nullclines, where dTu

dt = 0, dTi
dt = 0, and dV

dt = 0. To determine the stability of
the steady states, we apply linear stability analysis and discuss in detail their clinical implications.
The linearized system at point (Tu, Ti, V ) is summarized by the variational matrix

J =

 −V λv − (Ti + Tu − 1)r − Tur −Tur −Tuλv
V λv −1 Tuλv

0 ρ −ωv


There are three steady state solutions namely:

(i) Tumor Eradication Steady State (SS0): SS0 = (T ∗u , T
∗
i , V

∗) = (0, 0, 0) which rep-
resents the situation with a complete tumor eradication. Importantly, this steady state
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indicates a successful oncolytic virotherapy, where all state variables are zero. Evaluating
the variational matrix at this steady state gives

J(SS0) =

 r 0 0
0 −1 0
0 ρ −ωv

 . (3.21)

The corresponding eigenvalues are r,−1,−ωv. SS0 is unstable since r > 0. Note that Ti−V
plane is the stable invariant subspace of the system defined by Eqs. (3.14)–(3.16), and the Tu-
axis is the unstable invariant subspace. We also note that the local stable invariant manifold
for our system (Eqs. (3.14)–(3.16)) is in the Ti−V plane, while Tu-axis denotes the unstable
invariant manifold. A possible interpretation for SS0 is that without OV, the uninfected
tumor cell population will proliferate from a small initial value in the neighborhood of SS0.
If, on the other hand, the OV manages to successfully and productively infect all tumor
cells, then the tumor will shrink, due to oncolysis of infected cells, until no tumor cell exists
in the subsystem.

(ii) Ineffective Virotherapy Steady State (SS1): (T ∗u , T
∗
i , V

∗) = (r, 0, 0) which corresponds
to a tumor constituted entirely by susceptible (uninfected) cells. This indicates a failed on-
colytic virotherapy since the uninfected tumor cells Tu continues to grow up to the carrying
capacity of the system (i.e., here tumor reaches its environmental carrying capacity when
T ∗u = 1), and no oncolytic virus survives. The variational matrix evaluated at this steady
state yields:

J(SS1) =

 −r −r −λv
0 −1 λv
0 ρ −ωv

 , (3.22)

and the corresponding characteristic polynomial of this matrix is P (s) = s3+(r + ωv + 1) s2+
(−λvρ+ rωv + r + ωv) s− rλvρ+ rωv = 0. The eigenvalues are s1 = −r, s2,3 = 1

2(−ωv−1±√
(ωv − 1)2 + 4λvρ). Next, we state the stability theorems and their corresponding proofs.

Theorem 2 (Local Stability) SS1 is locally asymptotically stable when ρ < ωv
λv

and unstable
when ρ > ωv

λv
.

Proof. We note that s1 = −r < 0 and s2 = 1
2(−ωv−1−

√
(ωv − 1)2 + 4λvρ) < 0, for all non-

negative parameter values, and s3 = 1
2(−ωv−1+

√
(ωv − 1)2 + 4λvρ) can either be negative,

positive and zero. If
√

(ωv − 1)2 + 4λvρ < 1+ωv, then s3 < 0. Since 1+ωv is positive, then

it follows that (ωv−1)2+4λvρ < (1+ωv)
2, which is equivalent to ρ < ωv

λv
. Thus, when ρ < ωv

λv
,

all three eigenvalues (s1, s2 and s3) are negative. Hence SS1 is locally asymptotically stable.
Equivalently, since P (s) = s3 + (r + ωv + 1) s2 + (−λvρ+ rωv + r + ωv) s − rλvρ + rωv =
s3 + a2s

2 + a1s+ a0 = 0, where a2 = ωv + r+ 1, a1 = ωvr+ r+ωv − ρλv, a0 = ωvr− λvρr,
we notice that a2 > 0 and that if R0 < 1 then a1 > 0, a0 > 0 and a1a2 − a0 > 0. Hence, by
the Routh-Hurwitz criterion [173, 174], we deduce that SS1 is locally asymptotically stable.
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Similarly, whenever ρ > ωv
λv

, then
√

(ωv − 1)2 + 4λvρ > 1 + ωv. This implies that s3 > 0.
Hence SS1 is unstable.

Given the positively invariant domain ΩV1 (see Eq. (3.19)), we can actually prove that the
steady state solution SS1 is globally asymptotically stable in the whole domain ΩV (see
Eq. (3.18)) using Lyapunov functions. Here, we state the main theorem and provide its full
proof.

Theorem 3 (Global Stability) When ρ < ωv
λv

, SS1 is globally asymptotically stable.

Before we provide a detailed proof of this theorem, note that given the positively invariant
domain ΩV1 (see Eq. (3.19)), the steady state solution SS1 should be globally asymptot-
ically stable in the whole domain ΩV (see Eq. (3.18)). To prove this, we first construct a
Lyapunov function based on a specified range of the parameter ρ. We simplify the model by
the translating the state variables as follow: Tu = 1− T̂u, Ti = T̂i, and V = V̂ . For notation
convenience, we drop the hats over the state variables, and have the following system:

dTu
dt

= −rTu + rTi + rT 2
u + λvV − rTuTi − λvTuV (3.23)

dTi
dt

= λvV − λvTuV − Ti (3.24)

dV

dt
= ρTi − ωvV, (3.25)

and the invariant domain ΩV1 (see Eq. (3.19)) is translated to

ΩV2 =
{

(Tu, Ti, V ) ∈ R3
+ | Tu ≥ 0, Ti ≥ 0, 0 6 Tu − Ti 6 1, V ≥ 0

}
. (3.26)

Now we give the proof of Theorem 3:

Proof. Given the nonnegative initial conditions (Tu0, Ti0, V0) in ΩV2, then by Theorem 3.4.1
and 3.4.1, the corresponding solutions of the dimensionless state variable satisfy 0 ≤ Tu(t) ≤
1, 0 ≤ Ti(t) ≤ 1, and V (t) ≥ 0. It suffices to show that if Ti(t) and V (t) approach zero,
then Tu(t) also approaches zero. When 0 < ρ < 1, we define a Lyapunov function

G (Tu, Ti, V ) =
1

2
λvρωvT

2
i + λ2

vρTiV +
1

2
λ2
vV

2

Using Theorem 3.4.1, it is easy to check that G (Tu, Ti, V ) > 0. The orbital derivative is
given by

Ġ (Tu, Ti, V ) = λvρωvTiṪi + λ2
vρṪiV + λ2

vρV̇ Ti + λ2
vV V̇

= λvρωvTi (λvV − λvTuV − Ti) + λ2
vρ (λvV − λvTuV − Ti)V

+ λ2
vρ (ρTi − ωvV )Ti + λ2

vV (ρTi − ωvV )

= λvρ (λvρ− ωv)T 2
i − λ2

vρωvTiTuV + λ2
v (λvρ− ωv)V 2 − λ3

vρTuV
2

+ λvωv (ρ− 1)TiV.

Since ρ < ωv
λv

, which means, λvρ − ωv < 0, and 0 < ρ < 1, implies that ρ − 1 < 0, then it

follows that Ġ (Tu, Ti, V ) < 0. Therefore, using this Lyapunov function, we have Ti(t)→ 0
and V (t)→ 0 as t→ +∞ when ρ < ωv

λv
.



Chapter 3. NK cells recruitment: Oncolytic virotherapy 30

Now, we show that Tu(t)→ 0 as t→ +∞ too. From Eq. (3.23), we have

dTu
dt

= −rTu + rTi + rT 2
u + λvV − rTuTi − λvTuV

= −rTu(1− Tu) + rTi(1− Tu) + λvV (1− Tu)

= (1− Tu) [rTi + λvV − rTu]

≤ rTi + λvV − rTu.

Solving for Tu, we obtain

0 ≤ Tu(t) ≤ Tu0e
−rt + e−rt

∫ t

0
(rTi(s) + λvV (s)) ersds.

Taking the limit on both sides we have

lim
t→∞

Tu(t) ≤ Tu0e
−rt + lim

t→∞
e−rt

∫ t

0
(rTi(s) + λvV (s)) ersds

≤ 0 + lim
t→∞

∫ t
0 (rTi(s) + λvV (s)) ersds

ert

≤ lim
t→∞

1

r

(rTi(t) + λvV (t)) ert

ert

≤ 1

r

[
lim
t→∞

rTi + lim
t→∞

λvV (t)
]

≤ 1

r
(0 + 0) (since both Tu(t)→ 0 and V (t)→ 0 as t→ +∞.)

≤ 0.

Thus, we notice that Tu(t)→ 0 as t→ +∞. Hence, given an initial condition in the domain
ΩV2, then Tu(t), Ti(t) and V (t) all approach the origin as t → +∞. Therefore, SS1 is a
global attractor for the system (3.14− 3.16).

Clinical implication: Theorem 3 has an important clinical implication. An oncolytic
virotherapy fails when the burst size of an oncolytic virus is less than ωv

λv
, since there will be

an insufficient number newly produced viruses to productively infect tumor cells. This means
that whenever the number of released viruses from infected cells is less than ωv

λv
, then the

tumor regrows uncontrollably up to a maximum size (i.e., when Tu = 1). It is also important
to note that this therapeutic failure depends on the number of factors, including the initial
tumor size, the replication ability of oncolytic virus, the initial number of infected tumor
cells, and the initial virus inoculum (which is often manipulated in orders of magnitude
(103 − 1010) plaque-forming units (PFU) [175]). In other words, when these therapeutic
factors are within the domain ΩV2 (defined in Eq. (3.26)), oncolytic virotherapy will fail
whenever ρ < ωv

λv
. Furthermore, it is also crucial to note that the burst size is independent

of the initial conditions.

We shall denote by ρc = ωv
λv

the threshold upon which virotherapy fails. That is, ρc is a
threshold value for the burst size. Let ρ = ρc, then ρλv = ωv. To complete the steady
state analysis, we shall investigate the stability of the linearized system (see Eqs. (3.23)–
(3.25)) at SS1 at this critical case ρ = ρc. In this case, the variational matrix at SS1 has two
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negative eigenvalues and one zero eigenvalue. We use the center manifold theorem to reduce
the linearized system, Eqs. (3.23)–(3.25), to its local center manifold, and investigate the
qualitative behavior of the reduced system. Here, we state the main theorem and its detailed
proof below. We also provide a brief discussion about the general biological significance of
this fundamental theorem.

Theorem 4 (Threshold Local Stability) SS1 is locally asymptotically stable when ρ = ρc =
ωv
λv

.

Proof. We use a center manifold theorem to reduce the system (3.23–3.25) to its local
center manifold. First we segregate the system into two parts, the part with zero eigenvalue
and the one with negative eigenvalues. Considering the linear part of system (3.23–3.25),
then the corresponding matrix is

L =

 −r r λv
0 −1 λv
0 ρ −ρλv


The eigenvalues and corresponding eigenvectors of L are

λ1 = −r, with V1 = (1, 0, 0)T

λ2 = − (1 + ρλv) , with V2 = (ρλv − r, 1 + ρλv − r, ρ(1 + ρλv − r))T

λ3 = 0, with V3 = (λv(r + 1), rλv, r)
T .

Let T = (V1, V2, V3) be the transformation matrix and let Y = (Tu, Ti, V )T, then we can
write the system (3.23− 3.25) into a reduced system

dY

dt
= LY +N, (3.27)

where N =
(
rT 2

u − rTuTi − λvTuV,−λvTuV, 0
)T

. Now let Y = TX, then we have

dX

dt
= T−1LTX + T−1N, (3.28)

where the diagonal matrix T−1LT is define as

T−1LT =

 −r 0 0
0 −(1 + rλv) 0
0 0 0

 ,

and Tu = x1 + (ρλv − r)x2 + λv(r + 1)x3, Ti = (1 + ρλv − r)x2 + rλvx3, and
V = −ρ(1 + ρλv − r)x2 + rx3. Now considering the last term, T−1N , in Eq. (3.28), and let
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T−1N = (n1, n2, n3)T, then expressing ni, i = 1, 2, 3 in terms of xi, we have

n1 = rT 2
u − rTiTu − λvTuV

= A11x
2
1 +A12x1x2 +A13x1x3 +A22x

2
2 +A23x2x3 +A33x

2
3.

n2 =
1

λ2
vρ

2 − λvrρ+ r − 1

((
λvTuV + rTiTu − rT 2

u

) ((
λ2
vr + λ2

v

)
ρ2 + r2

−
(
λvr

2 + λvr − λv
)
ρ
)

+ rλvTuV
)

= B11x
2
1 +B12x1x2 +B13x1x3 +B22x

2
2 +B23x2x3 +B33x

2
3.

n3 =
1

λ2
vρ

2 − λvrρ+ r − 1

((
λvTuV + rTiTu − rT 2

u

)(
λ2
vρ+ λv

)
− rλ2

vTuV
)

= C11x
2
1 + C12x1x2 + C13x1x3 + C22x

2
2 + C23x2x3 + C33x

2
3.

where the coefficients Aij , Bij , and Cij , i, j = 1, 2, 3 can be easily determined. Then the
transformed system can now be written as

dZ

dt
= BZ +

(
n1

n2

)
(3.29)

dx3

dt
= Ax3 + n3. (3.30)

where

B =

(
−r 0

0 −(1 + rλv)

)
, and A = (0) .

It is easy to verify that the matrix B has negative eigenvalues and A has zero eigenvalue. It
can also be easy checked that each ni, i = 1, 2, 3, is a C2 differentiable function, ni(0, 0, 0) =
0 and Dni(0, 0, 0) = 0, where Dni is the variational matrix of the function ni. Then, by the
Center Manifold Theorem [176], there exits a center manifold given by

Z = h(x3) =

(
h1(x3)
h2(x3)

)
(3.31)

with h(0) = 0 and Dh(0) = 0, and it satisfies the equation

Bh(x3) +

(
n1 (h(x3), x3)
n2 (h(x3), x3)

)
= Dh(x3) · (Ax3 + n3 (h(x3), x3)) (3.32)

= Dh(x3) · n3 (h(x3), x3) . (3.33)

Let u = x3, then we can approximate h(u) as follows:

h(u) =

(
h1(u)
h2(u)

)
(3.34)

=

(
c2u

2 + c3u
3 + c4u

4 +O
(
u5
)

d2u
2 + d3u

3 + d4u
4 +O

(
u5
) ) . (3.35)
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For simplicity, we consider the order up to 5, and we will know later if it is enough. Then
we calculate the ni, i = 1, 2, 3, as follows:

n1(h(u), u) = n1 (h1(u), h2(u), u)

= A33u
2 +O

(
u4
)

n2(h(u), u) = n2 (h1(u), h2(u), u)

= B33u
2 +O

(
u4
)

n3(h(u), u) = n3 (h1(u), h2(u), u)

= C33u
2 +O

(
u4
)
.

We substituting ni, i = 1, 2, 3, into Eq. (3.33), and comparing the coefficients on both sides

of the equation, we obtain C33 = −rλ2v(r+1)2(λvρ+1)
λ2vρ

2−λvrρ+r−1
< 0. Now reducing the system (3.23–

3.25) to its local center manifold, which is a single equation, we have

dx3

dt
= n3(h(x3), x3) = C33x

2
3 +O

(
x4

3

)
. (3.36)

Eq. (3.36) governs the stability of the zero solution of the system (3.29–3.30). Since C33 < 0,
then the zero solution, x3 = 0, is locally asymptotically stable. Therefore, we conclude
that the trivial solution of the system (3.23–3.25) is locally asymptotically stable when
ρ = ρc = ωv

λv
.

Clinical implication: Theorem 4 implies if the viral burst size is at the limiting value, ρc,
then OV therapy can control tumor growth (i.e., oncolytic virotherapy has reached a stable
state). Below this threshold value, as Theorem 3 indicates, oncolytic virotherapy fails. This
is reasonable because when burst sizes are too low, tumor growth cannot be controlled by
OV [75, 166, 177]. Interestingly, OV can easily be genetically modified to yield high titers
[48], which gives OV therapy more therapeutic benefit over other treatment modalities. If
OV burst size is big, there will be more free OV within the TME, thereby increasing the
chance of tumor infection.

Note that when ρ > ρc = ωv
λv
> 0, there is a third steady state which we define below. This

is a unique positive steady state where tumor and OV coexist within the TME.

(iii) Coexistence Steady State (SS2): (T ∗u , T
∗
i , V

∗) =
(
ωv
ρλv

, ωvr(λvρ−ωv)
λvρ(ωvr+λvρ) ,

r(λvρ−ωv)
λv(ωvr+λvρ)

)
which

describes a therapeutic situation where both tumor and oncolytic viruses coexist within the
TME.

Clinical implication: Since SS2 is locally asymptotically stable, then one plausible bio-
logical interpretation of this state is that OV when used as a monotherapy is still capable
of eradicating tumor cells. In agreement with this finding, several preclinical studies have
demonstrated that intratumoral administration of OV can induce complete tumor regres-
sion [178, 179]. It is important to note, however, that a systemic administration of OV to
tumor sites is still limited and has had some varying degree of success in tumor elimination
[62, 63, 180].
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3.4.3 Basic reproductive number

To get a better understanding of how tumor elimination may depend on OV characteristics, we
consider the basic reproductive number of the model, R0. A basic reproductive number can be
defined as the average number of new tumor infections generated by one infected cell, via cell
lysis, during virotherapy in a completely susceptible cell population [181]. In general, if R0 > 1,
then, on average, the number of new infections resulting from one infected cell is greater than
one. Thus, viral infections will persist in tumor cell populations. If R0 < 1, then, on average,
the number of new infections generated by one infected cell in virotherapy is less than one.
This threshold can as well be used to delineate parameters which are most important during
tumor infection. We used the next generation method described in [181] to calculate the basic
reproductive number, R0, and obtained R0 = ρλv

ωv
. Importantly, we can summarize the following

result of the non-dimensionalized immune-free submodel (Eqs. (3.14)–(3.16)) as follows:

Theorem 5 The model defined by Eqs. (3.14)–(3.16) always has a trivial steady state (Tumor
Eradication Steady State) SS0 = (0, 0, 0) which is unstable. Moreover,

1. If R0 < 1, then the system (3.14–3.16) has an additional steady state, namely the In-
effective Virotherapy Steady State (virus-free equilibrium) SS1 = (r, 0, 0) which is locally
asymptotically stable.

2. If R0 > 1, then SS1 becomes unstable and the system (3.14–3.16) has an additional steady
state (Coexistence Steady State (SS2)) given by

SS2 =

(
ωv
ρλv

,
ωvr (λvρ− ωv)
λvρ (ωvr + λvρ)

,
r (λvρ− ωv)
λv (ωvr + λvρ)

)
.

which is locally asymptotically stable.

The proof is as follows:

Proof. If R0 < 1, it is easy to see that SS0 = (T ∗u , T
∗
i , V

∗) = (0, 0, 0) is an equilibrium point of
the system (3.14–3.16) and that λ = r is an eigenvalue of the Jacobian matrix at SS0 (see Matrix
J(SS0) 3.21), implying that it is locally asymptotically stable.

If R0 > 1, then we know that there is an additional steady state (Coexistence Steady State
(SS2)) given by

SS2 =

(
ωv
ρλv

,
ωvr (λvρ− ωv)
λvρ (ωvr + λvρ)

,
r (λvρ− ωv)
λv (ωvr + λvρ)

)
.

Furthermore, the characteristic equation at SS2 is

z3 + b2z
2 + b1z + b0 = 0
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with

b2 = λvρωv+ωvr+ρλv
ρλv

b1 =
ωvr(λvρr+ωv2r+λvρωv+ρλv)

ρλv(ωvr+ρλv)
ωvr(ρλv−ωv)

ρλv

b0 =
ωvr(rρλvωv3− ρ3λv

3+ρ2λv
2ωv2+λvωvr2ρ+r2ωv3+λv

2ρ2r+3rρλvωv2+3ρ2λv
2ωv+λvωvrρ+ λv

2ρ2)
ρ2λv

2(ωvr+ρλv)
.

Moreover, we have b2 > 0 and if R0 > 1, then b1 > 0, b0 > 0 and

b1b2 − b0 =

(
ωvr

(
rρλvωv

3 − ρ3λv
3 + ρ2λv

2ωv
2 + λvωvr

2ρ+ r2ωv
3

ρ2λv
2 (ωvr + ρλv)

+
λv

2ρ2r + 3rρλvωv
2 + 3ρ2λv

2ωv + λvωvrρ+ λv
2ρ2
)

ρ2λv
2 (ωvr + ρλv)

)
> 0

Hence, by Routh-Hurwitz criterion [173, 174], we deduce that SS2 is locally asymptotically stable.

3.4.4 Local sensitivity index of endemic equilibria

As a preliminary step and to understand how model parameters impact tumor progression, we
carried out a forward local sensitivity index, with respect to total tumor size at equilibrium, and
the virus basic reproductive number, R0. This analysis is important, not only for identifying
key parameters affecting total size at tumor endemic equilibrium, but also for determining the
relative significance of each parameter change to therapeutic outcome. Thus, we could quantify an
appropriate OV inoculum that could cytoreduce tumor burden to tumor equilibrium. The total
tumor size at equilibrium of the non-dimensionalized immune-free submodel (see Eqs. (3.14)–
(3.16)) is given by

Tot = T ∗u + T ∗i =
(r + 1)ωv
ωvr + ρλv

. (3.37)

With this, we obtain the sensitivity indices of the model to the total tumor endemic equilibria
with respect to the dimensionless viral clearance rate (ωv), proliferation rate (r) and infection
rate (λv) respectively as

ΓTotωv =
ρλv

ωvr + ρλv
(3.38)

ΓTotr =
r (ρλv − ωv)

(r + 1) (ωvr + ρλv)
(3.39)

ΓTotλv = − ρλv
ωvr + ρλv

. (3.40)

To further comprehend therapeutic conditions that are best indicators of tumor control or persis-
tence, we now consider our non-dimensionalized immunocompetent system (see Eqs. (3.9)–(3.12)).
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Most importantly, we assess whether NK cells alone can eradicate or at least control tumor growth
to a certain low level. Without virotherapy the model reduces to{

dTu
dt = rTu (1− Tu)− cTTuN
dN
dt = fN − ηTuN − κNN.

(3.41)

We have the following theorem:

Theorem 6 1. If r <
cT fN
κN

, then (3.41) has a unique equilibrium point, E00 =
(

0, fNκN

)
which is locally asymptotically stable.

2. If r >
cT fN
κN

, then E00 is unstable and (3.41) has an additional equilibrium point given by

E0 =

(
η − κN +

√
∆

2η
,
r (η + κN )− r

√
∆

2ηcT

)
, (3.42)

where ∆ = (η + κN )2 − 4
ηcT fN
r

, which is locally asymptotically stable.

Proof. The equilibrium points of (3.41) are given by the solutions of{
(r (1− Tu)− cTN)Tu = 0
fN − ηTuN − κNN = 0.

(3.43)

From (3.43)1 we obtain Tu = 0 or Tu = r−cTN
r .

1. If Tu = 0, then we obtain the equilibrium point, E00 =
(

0, fNκN

)
. The eigenvalues of the

variational matrix at E00 are −κN and r− fN
κN
cT . Hence E00 is locally asymptotically stable

if r <
cT fN
κN

.

2. If Tu =
r − cTN

r
, then r >

cT fN
κN

, then from (3.43)2 we obtain

ηcT
r
N2 − (η + κN )N + fN = 0. (3.44)

The discriminant of (3.44) is ∆ = (η + κN )2−4
ηcT fN
r

> (η−κN )2 (since r > cT fN
κN

). Hence,

(3.44) has two real roots N± =
r
(
η + κN ±

√
∆
)

2ηcT
which are positive (since their product

and sum positive). Moreover, we have Tu± = r−cTN±
r = η−κN∓

√
∆

2η which, by ∆ > (η−κN )2,
implies that Tu+ < 0 and Tu− > 0.
This leads to the following virus-free equilibrium point

E0 =
(
Tu− , N−

)
.
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The eigenvalues of the variational matrix at E0 are given by the roots of the following
characteristic equation

z2 +
(
(r + η)Tu− + κN

)
z + r

√
∆Tu− = 0. (3.45)

Hence, r >
cT fN
κN

, then Tu− > 0 implying that (3.45) does not have roots with negative

real parts.

From this theorem, we find that if r <
cT fN
κN

, then E00 is locally asymptotically stable implying

that tumor will be eliminated by NK cells, though it is unclear when NK cells first get evolved
in combating tumor growth and progression [140].

Thus, we only focus on the case where r >
cT fN
κN

. In this case, tumor growth persists in the

presence of actived NK cells. The virus-free model stabilizes at E0 (see Eq. (3.42)). Based on this
analysis, we deduce that (3.41) has a virus-free equilibrium point given by E0, which is locally
asymptotically stable. Furthermore, the virus basic reproductive number of the model at E0 is
given by

R0 =
ρλv (r − cTN0)

r (cTVN0 + 1) (ωv + cVN0)
. (3.46)

calculated using the next generation method described in [181]. The vector formed by the rates
of new infections is given by

F =

[
λvTuV

0

]
The vector formed by the other transfer rates is

W =

[
Ti + cTV TiN

−ρTi + ωvV + cV V N

]

The next generation matrix is given by M = FV −1, where F = DFE0 =

[
0 λvTu0

0 0

]
and

W = DWE0 =

[
1 + cTVN0 0
−ρ ωv + cVN0

]
. We obtain

M =

[
ρλv(r−cTN0)

r(cTV N0+1)(ωv+cV N0)
λv(r−cTN0)
r(ωv+cV N0)

0 0

]
.

Thus

R0 =
ρλv (r − cTN0)

r (cTVN0 + 1) (ωv + cVN0)
.
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Due to a complex nature of the local dynamics described by Eq. (3.41), it is not easy to analytically
define the total size at equilibrium, as done for the immune-free submodel (see Eqs. (3.14)–(3.16)).
Thus, we calculate the sensitivity indices of the virus-free model with respect to the virus basic
reproductive number, R0. We have

ΓR0
N0

= −N0 (cTV cVN0 (2r −N0cT ) + (rcV + ωvcT + rωvcTV ))

(r −N0cT ) (ωv +N0cV ) (N0cTV + 1)
< 0 (3.47)

ΓR0
cV

= − N0

N0 + ωv
< 0 (3.48)

ΓR0
cTV

= − cTVN0

1 + cTVN0
< 0 (3.49)

ΓR0
cT

= ΓR0
N0

ηcTN0

r
√

∆
< 0 (3.50)

where N0 ≡ sN is the initial number of NK cells within the TME (e.g., at the time of tumor
implantation in immunocompetent mice).

3.5 Global sensitivity analysis

In addition to the model sensitivity index derived in Section 3.4.4, we performed a global pa-
rameter sensitivity analysis with our immunocompetent model, system (3.1− 3.4). The purpose
of this computational analysis is to identify the model parameters that contribute most signifi-
cantly to oncolytic virotherapy efficacy in the presence of reactive NK cells. In sampling all the
parameters, we determined a plausible range for each parameter (except those readily available
from the literature) from half to twice its baseline value in Table 3.1. Then following the method
proposed in [182], we generated 1000 samples using Latin hypercube sampling (LHS) to compute
the partial rank correlation coefficients (PRCC) and their associated p-values with respect to
tumor cell population (Ttumor(t) = Tu(t) + Ti(t)) at different time points. Note that we use LHS
along with PRCC because we are interested in determining which parameters have a monotonic
relationship with the total tumor cell population, and also knowing that PRCC can be applied
even in nonlinear monotonic relationships [183]. The PRCC varies between −1 and 1, where a
negative value indicates the negative correlation between the tumor cell population and a specific
parameter, and a positive value denotes the positive correlation between the tumor cell popula-
tion and the specific parameter. Given 0.01 level of significance, there is a significant relationship
between the tumor cell population and the specific parameter if the PRCC value is greater than
0.05 in absolute (i.e., PRCC value > |0.05|) and the corresponding p-values is less than 0.01 [20].

For simplicity, we assume that the NK cytotoxicity is the same against tumor cells. Thus, we
set the baseline value c = cTu = cTi = 8.68× 10−10 in LHS. Since the early induction of NK cell
response within the TME is associated with premature OV clearance [48, 70, 95], while the later
response is correlated with OV therapy enhancement [71–73], we computed the PRCCs at early
time points (e.g., at 1, 5, 10 and 15 days post-treatment with OV), and at later time points (e.g.,
at 30, 50, 70 and 100 days post-injection with OV). Fig. 3.2 depicts the PRCC for each model
parameter and at each time point.
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Notably, Fig. 3.2 (A) displays the significant negative correlations between the tumor cell popu-
lation and NK recruitment rate, ξN , environmental carrying capacity for activated NK cells, θN ,
and viral clearance rate, γ = dV , at day 1; thus demonstrating the significance of NK cell response
to infection in the early stage of OV infection. This observation is consistent with experimental
studies indicating that NK cells often proliferate during early stages of viral infection [16]. The
negative correlation between tumor and NK recruitment rate implies that a small change in the
recruitment rate of NK cells may result in more tumor reduction. While it is conceivable that NK
cells can be recruited to the TME by tumor antigens, for our modeling perspective, we assumed
that NK cell recruitment is enhanced by lysis, which is immunogenic, of infected cells. This result
further highlights the significance of NK antiviral response in combating tumor growth immedi-
ately upon viral infection establishment on first day of oncolytic virotherapy. Furthermore, we
note that the environmental carrying capacity for activated NK cells, θN , is negatively correlated
with tumor growth. One possible explanation for this is that if the TME allows for more infil-
tration of activate NK cells, this will have a negative effect on tumor growth. In a nut shell, in
agreement with preclinical models [70, 95], our results Fig. 3.2 (A) show that antiviral NK cell
response may inhibit OV spread and infection, if NK cells are recruited too early in oncolytic
virotherapy. Thus, it seems biologically plausible that these three model parameters significantly
affect the system outcome in the early stages of tumor growth.

Interestingly, in these early time points from day 10 onwards, we note that the parameter with
strongest correlation with tumor cell population is the NK cell recruitment rate, ξN . This suggests
that NK cell response induced after successful viral infection, which may force tumor to exhibit
PAMPS or DAMPS [66, 69, 74], is a key parameter governing the efficacy of oncolytic virotherapy.
While this result is somehow intuitive, the interpretation of this result is not obvious because NK
cell recruitment rate, ξN , is positively correlated with tumor progression (see Fig. 3.2 (A)). For
instance, one might assume that increasing the number of NK cells within the TME automatically
increases tumor growth. Actually, the quantitative interpretation of this result is that increasing
the NK cells within the TME may lead to tumor evasion, which we hypothesize that is due to
rapid NK cell-mediated viral clearance of free viruses or few newly infected tumor cells. Moreover,
this result suggests that a small change in the number of reactive NK cells within the TME can
have a large impact in OV therapy. This important result further emphasizes the significance
of OV-induced NK cell responses and that of designing OV which does not recruit NK cells too
quickly so as to maximize the clinical potential of combining OV therapy with NK cell-based
therapies. Other parameter that is significant during these early time points is the number of
pre-existing NK cells, sN ≡ N0. The negative correlation between tumor cell population and
sN implies that, before infection, a small change in the number of existing NK cells that can
potentially attack the OV or OV infected tumor cells, can result in more antitumoral effect. It
is, however, important to note that if the number of pre-existing activated NK cells, sN , is too
large, then it reduces the basic reproductive number, R0, of the virus below one (see Eq. 3.47).
Thus the OV infection cannot propagate within the TME. Of note, this finding highlights the
undesirable effects of rapid NK cell-mediated responses which might diminish the efficacy of
OV-based treatments in the early stage of viral infection.

Since the later NK cell responses may have a different impact on virotherapy compared to the
early NK cell responses, we continued this investigation by performing another sensitivity analysis
at 30, 50, 70 and 100 days post-treatment with OV. Fig. 3.2 (B) depicts the PRCC for each model
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(A)

(B)

FIG. 3.2. PRCCs results: Panel (A) Relative sensitivity of tumor cell population on day 1, 5, 10
and 15 days post-tumor treatment with OV. Panel (B) Relative sensitivity of tumor cell popula-
tion on day 30, 50, 70 and 100 days post-tumor treatment with OV. Each bar plot indicates the
partial rank correlation coefficient (PRCC) between the tumor cell population and each model
parameter.

parameter and at each time point. In contrast to the observation in Fig. 3.2 (A), the influence
of OV-induced NK cell responses on tumor cell population, governed by the parameter ξN , gains
less significance in day 50 and 70 in Fig. 3.2 (B). This is intriguing because from Fig. 3.2 (A),
NK cell recruitment rate, ξN , becomes increasingly significant towards the simulation end points,
suggesting that this parameters is more influential as tumor grows. Furthermore, we notice that
in Fig. 3.2 (B), ξN is more significant at day 100. Note also that at day 100, ξN is again
negatively correlated with tumor cell population as at day 1 in Fig. 3.2 (A), indicating that a
small change in the recruitment rate of NK cells at the late time points, may also result in great
reduction in tumor cell population. Again, this observation further highlights the significance of
late NK antitumoral and antiviral activities in oncolytic virotherapy. The second and the third
most significant parameters are the lysis rate of infected tumor cells, δ, and the inactivation
rate of NK cells by tumor cells, σ, at day 50. In addition to ξN and δ, at day 100, the other
significant parameters are the environmental carrying capacity for activated NK cells, θN , and
the half-saturation constant that maximizes the killing of infected tumor cells by NK cells, kN .

In summary, our results suggest that the innate immune-related parameters regulating NK ac-
tivity, are most significant either early or late time-scale of oncolytic virotherapy. This means
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that the NK cell responses are most influential at either early (partly because of rapid response
of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK
cells) time points of tumor treatment with OV. Rapid NK cell responses often result in premature
clearance of infected cells or free OV within the TME [70, 95], while the later responses are known
to enhance oncolytic virotherapy [71–73].

To investigate the antitumoral effects of OV and associated OV-induced NK cell responses, in the
following section we examine the transient and long-term dynamics of our models. In particular,
we focus on the variations of a few OV-related and NK cell-related parameters (identified as
significant through the sensitivity analysis or based on our knowledge of biological systems), to
explore different plausible treatment approaches that could yield potent reduction of a tumor or
at least slow tumor growth.

3.6 Results

In this section, we outline the parameter choices and the initial conditions used in our numerical
simulations. The numerical solutions of the model equations are performed using MATLAB
ode23s. We also perform a global parameter sensitivity analysis with our immunocompetent
model.

Model parameters and initial conditions

Known model parameter values and their ranges were taken from available literature, while un-
known parameter ranges were estimated using values that seemed biologically reasonable. The
baseline parameters used in the model simulations are given in Table 3.1. Since various mech-
anisms might lead to NK cell activation and recruitment, we parametrize our model based on
the fact that NK cell activation/recruitment is dependent on interactions between the NK cells
and infected tumor cells [72] or an ICD of infected cells [67, 162]. Thus, we adopt the activa-
tion/recruitment rate for NK cells as ξN = 1 × 10−5 day−1 [167] as our baseline value, but we
shall vary this parameter in the numerical analysis to explore the potential effects of induced
NK cell-mediated responses in oncolytic virotherapy. For the other parameters which govern the
cytopathicity of OV, we also sweep parameters within their realistic biological ranges. Note that
while we fix the values of most of the parameters used in our simulations, small variations in
the values of OV or NK cell related parameters allow our model to capture different dynamics
of the OV-tumor-NK cell interactions. Furthermore, in this study we do not consider a specific
virus as our baseline state variable because we are interested in the OV-induced NK cell-mediated
responses in general. We explore a plausible range of recruitment rates to capture the range of
likely behavior of slow and fast replicating viruses. Notably, our model captures different aspects
of slow replicating viruses, such the recombinant measles virus (MV-I98A-NIS) [184, 185], which
may lead to slow recruitment of activated NK cell, and the fast replicating viruses, such the
oncolytic herpes simplex virus (HSV) [95], which may lead to rapid recruitment of activated NK
cells [95]. It is also known, however, that the same oncolytic virus might replicate differently in
different regions [184]. Hence, we do not consider specific virus kinetics in this study, but rather
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focus on the ability of OV infection in recruiting activated NK cells. For the sake of parameter es-
timation, we consider the virus kinetics of oncolytic vesicular stomatitis virus (VSV), which is also
a fast replicating virus [75, 186], to estimate the virus lysis rate, δ, and the viral clearance rate,
γ. Tumor and NK cell related kinetic parameters are taken from the experimental-mathematical
models available in the literature and their sources are provided in Table 3.1. Unless otherwise
stated, we assume the following initial conditions: Tu = 1×106 cells, Ti = 0 cells, and V = 1×106

pfu.

Note that in the simulations, the days (t = 17 and t = 19) at which OV is injected into the system
are derived from the experiments of OV and NK cells in [42]. Even though in the experiments in
[42], the NK cells were administered intratumorally following the injection of oncolytic myxoma
virus (MYXV), in our simulations we consider the scenario where NK cells exist prior to viral
infections, to capture the effect of endogenous NK cell response in oncolytic virotherapy. In all
the simulations, we fixed the burst size of the virus to 103 pfu, which is in the range considered in
[166]. The efficacy of oncolytic virotherapy is often defined by how fast viral infection propagates
to inhibit tumor growth beyond a certain size [184]. As discussed in Section 3, when administered
to immunocompetent hosts, OV infection can trigger NK cell responses [30, 42, 139], which can
either enhance or inhibit therapy success.

The cytopathicity of OV, modeled as a death rate of the infected cells, is generally used as a metric
to gauge the success or failure of oncolytic virotherapy [2]. In this simulation, we seek to determine
the impact of a virus-induced NK cell response in virotherapy by varying the parameters related
to the kill-rate of tumor cells by NK cells, cT and cTV , and virus-induced NK cell response rate,
ξN . For simplicity, we assume that NK cells indiscriminately kill uninfected and OV-infected
tumor cells at the same rate [72]. Thus, unless otherwise stated, we set cT = cTV = 8.68× 10−10

(cells−1)(day−1) in all the simulations. The major results from the model’s simulations are
highlighted as follows.

3.6.1 Without NK cell response

To establish a basic understanding of when and how oncolytic virotherapy can eliminate or control
tumor proliferation without NK cell influence, we first compare two treatment scenarios under the
assumption that tumor turnover (proliferation and death rates) is dependent on the initial tumor
size. In particular, we hypothesize that oncolytic virotherapy is more efficient when applied to
large tumors compared to small tumors. To test this hypothesis, we simulate two treatments with
different initial tumor sizes: a small tumor size of 1 × 106 cells and large tumor size of 5 × 107

cells, in Fig. 3.3. Note that human tumor detection level varies between 107 and 109 [187]. Since
Eftimie and Hamam [188] showed that a tumor of size 5× 107 can exhibit growth dynamics that
approach a stable steady state, we take the tumor to be large if its size is 5 × 107 cells, even
though a tumor of such size might not always be clinically detectable.

Consistent with experimental studies in [29], the simulation results depicted in Fig. 3.3 (A)
show that if the initial tumor size is small, oncolytic virotherapy provides little benefit because it
takes a long time before infected cells are lysed by OV. For example, OV administered at day 19
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(A)

(B)

FIG. 3.3. Oncolytic virotherapy can control tumor growth in the absence of NK cell response.
Here, we only vary the initial tumor size from 1 × 106 cells to 5 × 107 cells. Panel (A) shows
simulations of tumor evolution from a small initial composition Tu0 = 1×106 cells. Vertical dashed
lines indicate different times of virus injection. OV is administered as a single bolus injection of
1× 106 pfu at days 17 and 19. Panel (B) indicates simulations of tumor evolution from a large
initial tumor size (Tu0 = 5×107 cells). Bold lines indicate tumor progression without virotherapy
and dashed lines indicate tumor progression under oncolytic virotherapy. All simulations are
done with the respective baseline parameters given in Table 3.1.

greatly cytoreduced the tumor to a minimum population of 7.2054× 107 cells, compared to OV
administered at day 17, which reaches a very large size of 1.4702 × 108. To further investigate
this observation, we simulate tumor evolution from a large initial size of 5 × 107 cells, shown
in Fig. 3.3 (B). The simulation results indicate that if the initial tumor size is large, oncolytic
virotherapy provides rapid benefit within a short period of time, on which the tumor reaches
a minimum of 4.9463 × 107 cells at day 34 before approaching a steady state population of
7.2390× 107 cells. Since the amount of viruses injected at each time point is the same, assuming
the virus replication kinetics are the same, we can say that the observed differences in tumor
reduction can be due to initial tumor sizes. A possible explanation for this finding is that the
higher the number of uninfected tumor cells, the higher the chances of OV infections. This in turn
leads to higher virus amplification and, potentially more infected cells. Therefore, the higher the
number of infected cells, the higher the cytoreduction of uninfected cells. Our finding (in Fig. 3.3)
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is consistent with other mathematical models of tumor-virus dynamics see [151, 184, 189]. For
example see Fig. 1 in Zurakowski and Wodarz [189], and experimental studies in [29].

Even though tumor elimination is possible under the current treatment settings, we realize that
the dynamics between the tumor cell population and the virus population oscillate to a stable
steady state (Coexistence Steady State (SS2)). Here, under the given parameters, this steady
state describes a controlled but persistent infection of tumor cells by OV, which inhibit further
tumor cell proliferation. Amplified by viral replication, we note that viral load at this steady
state is sufficient to prevent the continued growth of tumor cells. It is at this stage of tumor
progression that oncolytic virotherapy can be combined with other treatment modalities, such as
immunotherapy [190], to drive the tumor burden to a desirable low level [189] or to extinction.

Comparing treated tumors in Fig. 3.3 (B) versus the ones in Fig. 3.3 (A), we see that tumor cell
population declines before reaching their carrying capacity. This suggests that tumors which are
initially large can effectively be controlled by OV. In summary, OV is more effective at treating
larger tumors, though OV used as a monotherapy cannot drive tumors to extinction. Interestingly,
this observation is consistent with experimental models in [29, 38, 191]. In particular, it was shown
that while tumors in mice treated with oncolytic measles virus (MV) were much smaller compared
with untreated mice (controls) at each time point, tumors were not eliminated by MV infection
[191].

3.6.2 With OV-induced NK cell surveillance

Having elucidated virotherapeutic dynamics of our submodel without NK cell response, we now
perform a detailed computational analysis to study the advantages of a virus-induced NK cell
surveillance. We first explore effects of viral cytopathicity by examining dynamics of weakly
cytopathic versus strongly cytopathic OV in the presence of activated NK cells following OV in-
fection of tumors. We find that NK activity enhances oncolytic virotherapy only when a weakly
cytopathic OV is administered. We next investigate dynamics of NK cell recruitment in mod-
ulation of tumor growth. By comparing low and high recruitment rates of NK cells as well as
the variations in NK cell cytotoxic activity, we find that while higher recruitment of NK cells to
OV-infected tumor cells may attenuate oncolytic viral propagation, NK cell effector activity is
also an essential factor determining the overall OV efficacy. Finally, we numerically assess how an
increase or a decrease in the number of activated NK cells correlates with improved tumor growth
control, and deduce that decreasing the number of activated NK cells leads to tumor evasion.
These main results are further discussed in detail below.

(a) NK cell response augments oncolytic virotherapy only if viral cytopathicity is
weak

In addition to understanding how OV influences the growth of tumors of different initial sizes,
we are interested in exploring and characterizing virus-induced NK cell response to variations
in viral cytopathicity. Here we focus on the following question: How can we explain the signif-
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icance of viral cytopathicity in the presence of an active NK cell response? Wodarz [2] presents
a computational framework for deciding when viral cytopathicity plays an important role for
controlling tumor growth with non-replicating and replicating viruses. In particular, they find
that using replicating viruses with low viral cytopathicity leads to greater inhibition of tumor
growth. Their model predictions are only applicable to studies that have been performed in
vitro without immune cells, or in vivo on immunosuppressed or immunodeficient hosts. However,
infection of tumor by OV in immunocompetent hosts can stimulate NK activity [72, 192]. Now,
extending this line of argument by Wodarz [2] to immunocompetent hosts, we simulate several
scenarios based on different viral cytopathicity levels to investigate whether the presence of NK
cells might augment or inhibit OV activity. Simulation results in Fig. 3.4 show that, in keeping
with the same level of basal activation, virus-induced NK cytotoxicity is more beneficial when
tumors are treated with weakly cytopathic viruses (i.e., a weakly cytopathic virus, δ = 0.04 (as
considered in [2])) than with strongly cytopathic viruses (δ = 0.4 [2]). Note that, for illustrative
purposes, we assumed that the cytopathicity is too weak if δ < 0.04, which induces less than
4% of tumor reduction. For example, in [193], for a strong cytopathic virus, a tumor cell line
was infected at a multiplicity of infection (MOI) of 10 to induce 50% cytopathic effects. In gen-
eral, the cytopathicity of a virus depends on a virus type and MOI used [49, 193, 194]. One
explanation is that weakly cytopathic viruses allow for more cells to be infected [2] before NK
cell response is triggered. The higher the number of infected cells, the higher the cytoreduction
of uninfected cells [2, 195]. More importantly, since NK cells are stimulated by infected tumor
cells, then the larger the number of infected tumor cells, the higher the chance of NK cell stim-
ulation via contact-dependent activation [72]. Consequently, there is a strong NK cell response,
as depicted in Fig. 3.4 (G), which results in more NK cytotoxicity against OV-infected cells
(Fig. 3.4 (C)), free OV (Fig. 3.4 (E)), and more uninfected tumor cells (Fig. 3.4 (A)). It is
important to note that a weakly cytopathic virus induces a slower OV-induced death rate (small
δ) of infected cells, hence the corresponding NK cell response is not rapid (since in our model
we assumed that NK cell response is enhanced by OV-infected tumor cell death), allowing for
sufficient viral replication and propagation. The explanation for the observations in Fig. 3.4 is
as follows: a weakly cytopathic virus results in a high viral load (since the antiviral NK cell
response is not quickly triggered to clear OV-infected tumor cells), which consequently results in
more tumor infection and increased reduction of uninfected tumor cells. On the other hand, if an
OV is strongly cytopathic, then there will be a low viral load (since the antiviral NK cell response
is rapidly triggered to clear OV-infected tumor cells), which consequently results in less tumor
infection and a small reduction of uninfected tumor cells. These observations, interestingly, are
consistent with previous experimental reports which indicate that the local interactions between
the NK cells and OV-infected tumor cells resulted in more tumor cell death compared to virus
infection alone [42, 72, 73] (e.g., see Fig. 3 and Fig. 4E in [72]). This suggest that NK cell response
augments OV oncolysis.

We should emphasize that the activity of the strongly cytopathic virus results in fewer total
infected cells. The reason for this is that the strongly cytopathic virus replicates quickly upon
productive infection, which, in theory, reduces the life span of an infected cell. In other words, the
shorter the life span of an infected cell, the lower the probability that it will be encountered by
NK cells, reducing NK cells stimulation and recruitment. This, in turn, leads to more evasion of
uninfected cells from NK cell surveillance (Fig. 3.4 (B)). One possible explanation is that rapid
killing of infected cells induces a rapid NK cell response (especially NK response following OV
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injected at day 19) as indicated in Fig. 3.4 (H), and consequent tumor escape (Figs. 3.4 (B)
and (D)) and virus persistence (Fig. 3.4 (F)). Treatment outcome depends on the different NK
cell response induced by either a strong or weak viral cytopathicity.

In both Figs. 3.4 (G) and (H) we observe an initial growth phase of the NK cell population,
followed by a decline. Note that without viral infection, a typical simulation of the NK cell
response would be characterized by an initial growth phase which is followed by a retardation,
after which the NK cell population reaches a relatively low stable equilibrium [5, 132] (which may
correspond to a memory phase [94, 140, 196]). Based on this observation, we speculate that the
long-term productive infection of tumor cells is maintained by the NK cell memory response at a
later stage of the antiviral response (see Figs. 3.4 (C) and (G)). A future model that explicitly
includes a memory population might be useful to check this hypothesis. Upon viral infection, the
NK cell population expands, the extent of which depends on how weakly or strongly cytopathic
the viruses are at lysing infected cells, in response to viral antigenic stimulation by infected tumor
cells. It is also very important to note that if the number of effective pre-existing NK cells (sN )
is too large, then the infection will not be established [2]. In the above simulations, we assume
that the pre-existing NK cell response is not sufficiently strong to inhibit the virus infection. Fur-
thermore, it is worth noting that even though the pre-existing NK cells may remove infected cells
prior to sufficient viral amplification, the weakly cytopathic viruses strongly induce activation and
recruitment of NK cells, but at a slow recruitment rate (Fig. 3.4 (G)). Taken together, in accor-
dance with previous mathematical models with inclusion of NK cell surveillance [71, 75, 132], the
simulation results presented here demonstrate how useful the mathematical model is in explaining
and characterizing the NK cell responses to variations in oncolytic viral cytopathicity. Notably,
these findings demonstrate that NK activity could further enhance therapeutic potential of OV,
and highlight the importance of comprehending a specific NK cell response which may help to
maximize therapeutic benefits of OV. Of note, we observe that NK cell response induced by a
weakly cytopathic OV leads to tumor elimination (see Figs. 3.4 (A) and (C)), whereas the NK
cell response induced by a strongly cytopathic OV only the response following second injection
(at day 19) is able to lead tumor eradication (see Figs. 3.4 (B) and (D)). It is interesting to note
that these findings are in line with in vivo preclinical models. The in vivo models have shown
that the administration of OV as a monotherapy rarely results in complete tumor regression of
established tumors compared to combinatorial treatments [81, 82, 190, 197–199].

(b) Recruitment of NK cells modulates tumor growth

Next, we examine the impact of the NK cell antitumor effect induced by viral infections. So far we
have considered viral cytopathicity as a potential mechanism by which NK cells are recruited into
the TME. OV alone can, however, recruit NK cells to the TME [72, 95, 130]. To this end, various
oncolytic vectors that are engineered to express immunostimulatory genes or cytokines, such as
TRAIL and interleukin-12 (IL-12) [49, 200], generate robust antitumor specific NK cell responses.
These cytokines or genes, however, differ greatly in their immunostimulatory potential. Some of
these cytokine-expressing OV are known to recruit NK cells strongly (e.g. IL-12 [201]) while
others do not (e.g., TRAIL [30, 49]). The precise mechanisms mediating NK cell recruitment to
tumor sites are still poorly understood [202]. Increasing evidence from in vivo studies reveals that
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higher recruitment of activated NK cells to the TME yielded a therapeutic effect in virotherapy
[42, 203–207]. Moreover, in all these studies, it was shown that the depletion of NK cells within
the TME diminished the therapeutic outcome of OV treatment. On the other hand, various
experimental studies demonstrated that the depletion of activated NK cells in the TME improved
oncolytic virotherapy [71, 76, 95]. Given these opposite experimental findings, it is imperative
that we improve our understanding of the complex role of NK cells in oncolytic virotherapy. In
the set of numerical simulations, we explore the impact of the strength of the virus-mediated
NK cell responses in oncolytic virotherapy. To do so, we simulate two treatment scenarios to
determine whether variations in NK cell recruitment (or proliferation) rate (ξN ) could enhance
overall oncolytic virotherapy. In the first case, we simulate a treatment scenario where there is
a high recruitment of activated NK cells which are weakly cytotoxic against tumor cells (here
we vary ξN from a baseline value in Table 3.1 to ξN = 1.44 × 10−4 and c = cT = cTV =
8.68 × 10−12(weaker NK cytotoxicity). In the second case, we simulate a treatment scenario
where there is a high recruitment of activated NK cells which are strongly cytotoxic against
tumor cells (here similarly, we vary ξN from the baseline value in Table 3.1 to ξN = 1.44× 10−4

and c = cT = cTV = 1 × 10−10(stronger NK cytotoxicity). We should emphasize that we only
vary these two parameters (ξN , c) because increasing evidence indicates that variations in NK cell
recruitment as well as NK cytotoxicity may potentially illustrate how host immune system ally
with OV against tumors [72, 95, 206, 208, 209]. Moreover, we also emphasize that the strength of
the NK cell response does not only depend on NK cell recruitment (ξN ), but also on the number
of pre-existing NK cells which are ready to combat the infection upon the entry of the virus into
the body (given by sN/d) and the NK cell killing rate (given by c). Note also that if the number
of pre-existing active NK cells is too high, the viral infection will not be established [132]. To
account for this, in the simulations we fixed the number of NK cells that can potentially attack
the virus before infection to 3.2 × 103 as in [5], and vary NK cell recruitment and effector rates
as demonstrated in Fig. 3.5.

Interestingly, we find that the recruitment rate of NK cells and the rate at which uninfected
and infected tumor cells are killed by activated NK cells strongly influence the final treatment
outcome (Fig. 3.5). The variations of these parameters lead, as expected, to virus clearance and
complete eradication of OV-infected tumor cell population. In the first case (weakly cytotoxic
NK cells), there is a fast reduction of the uninfected tumor cell population, which is ultimately
followed by rapid tumor growth rebound, indicating an ineffective virus-NK cell treatment (see
Figs. 3.5 (A) and (C)). On the other hand, in the second case (strongly cytotoxic NK cells), the
tumor vanishes or at least remains small upon interaction with OV and strongly cytolytic NK
cells (see Figs. 3.5 (B) and (D)). Note that in Fig. 3.5 (B), the uninfected tumor cell population
declines sharply following viral infection and rapid killing by NK cells. However, since NK cells
are stimulated by infected tumor cells, which are also susceptible to NK cell-mediated killing,
there is also a swift decline in the infected tumor cell population (Fig. 3.5 (D)). Consequently,
a sharp decline in the infected tumor cell population results in a subsequent drop in the NK
cell population (Fig. 3.5 (H)), allowing the uninfected tumor cell population to rapidly rebound
from the NK cell-mediated dormant state to carrying capacity. In the simulations, we also
note that the number of weakly reactive NK cells (Fig. 3.5 (G)) reach higher peaks after the
infection, but quickly declines compared with the strongly reactive NK cells with more pronounced
tumor control dynamics (Fig. 3.5 (H)). This is partly because tumor evasion is depend on the
virotherapy efficacy with which NK cells surge for the infection. Thus, weaker NK cell responses
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can correlate with poor NK cell antitumor surveillance compared with the stronger NK cell
responses. We should emphasize that the recruitment of NK cells into the TME depends on
the activation of NK cells by infected tumor cells. When the NK cell activation is too fast (i.e.,
leading to high NK cell recruitment), the NK cell population will also decay rapidly [141], which
in turn will lead to impaired NK cell-mediated killings. Together, these simulations indicate that
not only high NK cell recruitment can modulate treatment efficacy, but also a small increase in
the NK cell effector activity can surprisingly influence treatment success.

In a nut shell, these results suggest that while recruiting NK cells at higher rate is important for
augmenting virotherapy [206, 209], it is also important to enhance the NK cell effector activity
(e.g., the blockade of inhibitory NK receptor TIGIT [72]) to promote further cytoreduction of
tumor cells. Surprisingly, this high NK cell recruitment within the TME leads to tumor dormancy
or eradication (Fig. 3.5 (B) and (D)) or, perhaps as expected, maintainable lower tumor burden
[210]. It is important to note that too early recruitment of activated NK cells may diminish
oncolytic virotherapy efficacy.

(c) The depletion of the number of activated NK cells leads to increased overall tu-
mor burden

Having illustrated how the success of oncolytic virotherapy correlates with NK cell infiltration
following OV infection, it is essential to assess the relative killing of tumor cells by NK cells. In
particular, we seek to answer the following question: “Does OV infection of tumor lead to the
preferential NK-mediated clearance of virally infected tumor cells compared to uninfected tumor
cells?” [105]. Fig. 3.6 displays the comparative analysis of NK activities on tumor cell dynamics
under treatment with OV. NK cell antiviral activities, if invoked too early, may be detrimental
to OV propagation and OV-infected tumor cells, while the later activities following OV infection
of tumors may enhance NK cell-mediated antitumor surveillance.

Notably, as illustrate in Fig. 3.6 (B), a large number of activated NK cells is able to control,
or perhaps initiate clearance of, OV-infected tumor cells, compared to uninfected tumor cells
Fig. 3.6 (A). Most importantly, we realize that a decrease in the number of activated NK cells
leads to an increase in tumor progression (Fig. 3.6 (A)). This simulation suggests that the effect
of NK cell surveillance does not only depend on the number of pre-existing activated NK cells
within the TME, but also on the subsequent recruitment of NK cells necessary to mount sufficient
antitumoral activity over the entire treatment period. In particular, our findings in Fig. 3.6
illustrate that if activated NK cells are depleted before the end of the treatment period, then
tumor may uncontrollably proliferate to a higher steady state. In general, we note that on longer
time-scale, NK cell responses do not provide significant influence on tumor treatment outcome.
Thus, we suggest that other immune effector cells, such as activated CD8+ T cells [5, 75, 164]
or cytokine-induced killer (CIK) cells [211], should be incorporated into the system to provide
a longer-term immune responses that can augment oncolytic virotherapy. Taken collectively,
our findings from both Fig. 3.5 and Fig. 3.6 suggest that NK activity is extremely important
in determining the final outcome of OV therapy, since NK cells may augment an antitumoral
activity of OV infection.
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3.7 Discussion and conclusion

In this chapter, we set out to answer the question on how NK cell recruitment to the TME affects
oncolytic virotherapy. NK cells play a major role in eliminating viral infections, and are known
to indiscriminately attack both uninfected and OV-infected tumor cells rapidly [13, 72, 143].
This rapid clearance, however, may halt the desired spread of OV and hence diminish overall
oncolytic virotherapeutic efficacy. To this end, we developed a mathematical model describing
the interactions between uninfected and OV-infected tumor cells, OV, and NK cell responses.

First, we performed a global sensitivity analyses to assess which parameters are most likely to
significantly impact tumor cell response to oncolytic virotherapy administered in the presence of
reactive NK cells. Intriguingly, our sensitivity analysis results demonstrated that the recruitment
of NK cells by OV is more important during the intermediate phase of the viral infection. It is
noteworthy that although our model includes the prior existence of reactive NK cells within the
TME, which may possibly clear free viral particles, the OV-induced NK cell responses (governed
by the parameter ξN ) are less influential during the early or late stages of OV infection. This
finding has two important clinical implications: (a) during early time of OV infection, NK cell
response should be minimized in order to allow for the virus to replicate sufficiently [58, 71,
125, 128], (b) recruiting NK cells at a very late stage of viral infection may not be effective at
combating tumor burden. This result is consistent with preclinical and clinical studies which show
that there is a need for time-optimization of NK-based treatments to achieve targeted therapeutic
outcomes [13, 128].

From the model simulations, and in accordance with previous models [75], we find that the
efficacy of oncolytic virotherapy depends on the initial tumor size and the tumor size when
OV is injected into the system. As demonstrated in Fig. 3.3, it is important to note that a
small tumor with the same OV treatment at different times responds differently. Moreover, in
addition to its dependence on the initial tumor size (Tu0), we showed that the virotherapeutic
efficacy also depends on two key aspects: (a) the rate of tumor cell death induced by oncolytic
viruses (c), and (b) NK cell recruitment (or proliferation) rate in response to viral infections (ξN ).
Increasing the strength of viral cytopathicity should increase the lysis rate at which tumor cells
are destroyed [2], and thereby minimize the likelihood of tumor evasion and possibly increase
the chances of achieving complete tumor elimination with OV. It important to note that tumors
often develop multiple strategies to evade destruction by various antitumor therapies [5, 7, 212],
including oncolytic virotherapy [213]. As demonstrated by our simulations (Fig. 3.5), increasing
viral cytopathicity also increases induction of antiviral NK cell response, which may, if induced
prematurely to sufficient viral replication within infected cells, may halt further viral spread and
infection. Most intriguingly, we find that the weakly cytopathic OV (i.e., OV that replicates
slowly upon infection) recruit NK cells at a lower rate, and thereby allow sufficient time for viral
replication and propagation. That means, the slower the lysis rate of OV-infected tumor cells,
the lower the number of NK cells within the TME since NK cell recruitment is enhanced by
immunogenic cell death (ICD) of infected tumor cells [67, 69, 162, 177]. If, on the other hand, an
OV is strongly cytopathic (i.e., OV replicates and destroys infected tumor cells rapidly), then there
will be a high influx of NK cells into the TME due to the presence of damage associated molecular
patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) released during ICD of
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OV-infected tumor cells [27, 66]. Previously, it has been shown that for replication-competent
viruses, oncolytic virotherapy provides more antitumor effect if the virus is weakly cytopathic
compared to strongly cytopathic virus [2], consistent with our simulations (Fig. 3.4). This implies
that a weakly cytopathic OV leads to a higher virus amplification, which may potentially result
in more infected tumor cells. Hence this allows OV to destroy tumor cells before NK cells are
triggered to clear both OV and infected tumor cells, as well as uninfected tumor cells.

Since NK cells indiscriminately kill both uninfected and OV-infected tumor cells, they may de-
crease therapeutic effect of OV. Hence, an increase in the number of activated NK cell within
the TME may actually exert a negative effect. In particular, we were interested in quantifying
the impact of small variations in NK cell-mediated cytotoxicity (c) and the recruitment rate (ξN )
induced by OV. In Fig. 3.5, we investigated whether immunovirotherapy with increased active
NK cells could result in higher tumor cell lysis than oncolytic virotherapy alone (illustrated in
Fig. 3.3). Critically, we find that elimination of tumor cells by OV, albeit incompletely, can be
effectively achieved by recruiting activated NK cells at higher rates (compare Fig. 3.5 (A) to
Fig. 3.5 (B) and compare Fig. 3.5 (C) to Fig. 3.5 (D)). Surprisingly, the relative impact of
increasing the number of activated NK cells only leads to transient immune-mediated dormancy
(Fig. 3.5 (B)), suggesting the need for inclusion of other long-term effector cells (e.g., CD8+

T cells [75, 190]) in oncolytic virotherapy. To induce their cytolytic effect, NK cells expressing
natural cytotoxicity receptors (such as NKp30, NKp44, and NKp46 [13, 73, 95]) need to interact
with tumor cells expressing respective ligands. Normally, this interaction leads to binding of NK
cell receptors with their respective ligands on tumor cells which then results in death of tumor
cells [73, 93, 96, 128]. Thus, tumor evasion (as illustrated in Fig. 3.5) may be attributed to
insufficient binding of NK cell receptors with their respective ligands on tumor cells.

Lastly, OV-induced NK cell antiviral responses provide potent killing of infected tumor cells com-
pared to NK cell antitumoral responses (Fig. 3.6 (B)). Hence, a comparative analysis of treatment
effectiveness of OV-induced NK cell and tumor-present induced NK activities should always be
carefully examined before OV-NK cell therapy is applied in a clinical setting. Importantly, our
numerical simulation in Fig. 3.6 (A) clearly shows that a decrease in the number of activated
NK cells before the end of the OV treatment leads to tumor evasion. Overall, our simulations
suggest that NK response to stimulation by OV is more efficient at reducing the infected tumor
cell population than is an NK response stimulated by the presence of tumor alone.

Despite the model’s utility in explaining how OV-induced NK cell responses can improve virother-
apy, we acknowledge there are some limitations that may obscure the model predictions. Firstly,
note that although the model simulations were not fitted to any experimental data, most of the
parameter estimates used were taken from previous models that considered similar cell dynamics
proposed in this study. It is therefore important to note that the variability and uncertainty in
the model parameters does not limit the mathematical and computational analysis of this study,
and the resulting analyses provide a simple framework for further research into combined OV-
NK cell-based virotherapies. Furthermore, OV injection times considered in this model, though
assumed from experiments in [42], may not be the optimal times that could yield optimal timing
of NK cell recruitment. Thus, optimizing the time for OV-induced NK cell responses is needed
to balance unwanted early OV clearance or premature removal of OV-infected tumor cells and
the required later antitumoral NK cell responses. Despite these limitations, our mathematical
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model provides useful insights into the dynamics of NK cells that may enhance the activity of
OV in immunocompetent hosts. Importantly, our results suggest that although OV-induced NK
cell responses play a vital role in immune surveillance (see Fig. 3.5), NK cells alone cannot lead
to long-term tumor control, and that an additional immune surveillance arm (such as activated
CD8+ T cells [5, 75, 164]) is need to account for the long-term memory cell response (a key feature
of adaptive immune cells such T cells and B cells [140]). We need to emphasize that while the
model considered in this study is very simple, at least in its generic form, more complex dynamic
interactions between OV, the tumor cells, NK cells and other immune effector cells (e.g., CD8+

T cells) within the TME, will be considered in future research. Also, optimal control approaches
will be devised to determine the optimal therapeutic times for OV-induced NK cell responses
that provide maximal benefits in oncolytic virotherapy.

Collectively, our results illustrate the significance of understanding viral cytopathicity in the reg-
ulation of NK cell responses during oncolytic virotherapy. Furthermore, our results show not
only the potential of the mathematical modeling approach for oncolytic therapy, but also provide
strategies and insights into the specific mechanisms by which OV-induced NK cell responses could
augment antitumoral activities of OV. These findings should foster future research aiming to en-
hance the understanding of interactions between OV, tumor, and OV-induced NK cell responses.
This understanding may help to design and improve the NK cell-based therapies for augmenting
efficient oncolytic viruses.
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FIG. 3.4. Comparison of the impact of different manifestations of the viral cytopathicity. For
simplicity, we are assuming the activation rate of NK cells (ξN = 5 × 10−6) is the same for all
viruses. The left panel graphs show the number of cell or virus populations over time under
the treatment with weakly cytopathic virus, and the right panel graphs indicate the treatment
dynamics with strongly cytopathic viruses. The different lines represents three different instances
of the model simulation with the same parameter combination. Vertical dashed lines indicate
different times of virus injection. OV is administered as a single bolus injection of 1 × 106

pfu at days 17 and 19. These plots demonstrate that NK cytotoxicity synergistically enhanced
oncolytic virotherapy when the weakly cytopathic viruses are used. For the weakly cytopathic
virus, δ = 0.04 (as in [2]). For the strongly cytopahtic virus, δ = 0.4 (as in [2]). Other parameters
are kept at their baseline values given in Table 3.1

.
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FIG. 3.5. NK cell response is an important determining factor in the success of oncolytic vi-
rotherapy. Left panel: ((A),(C),(E) and (G)) Simulations of our model with increased NK cell
stimulation rate, but weakly cytotoxic effector activity. Right panel: ((B),(D),(F) and (H))
Simulations of our model with increased NK cell stimulation rate, but strongly cytotoxic effector
activity. In (B) and (D), an inset with a magnified area that shows early evolution of tumor
cells is also shown. Parameters were chosen as follows: ξN = 1.44× 10−4, c = 8.68× 10−12(weak
NK cytotoxicity), c = 1 × 10−10(stronger NK cytotoxicity). Other parameters are kept at their
baseline values given in Table 3.1.
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(A) (B)

FIG. 3.6. Comparison of the impact of NK activity on tumor cell growth. Panel (A) shows
that a decrease in the number of activated NK cells leads to an increase in tumor burden. Panel
(B) indicates that a large number of activated NK cells has control over a virally infected tumor.
These plots highlight the importance of relative contributions of NK-cell mediated antiviral and
tumor clearance. Parameters were chosen as follows: sN = 1 × 106, ξN = 1.44 × 10−4, c =
8.68×10−12(weaker NK cytotoxicity), c = 1×10−10(stronger NK cytotoxicity). Other parameters
are kept at their baseline values given in Table 3.1.
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Conclusions

In the present work, we have devised and formulated a novel mathematical model that describes
the local dynamic interactions between tumor cells, oncolytic viruses (OV) and natural killer
(NK) cells within the tumor microenvironment (TME). Initially, NK cells are assumed to be
present within the TME, even when there are no tumor cells or OV. First, we enhanced our
understanding of tumor-OV interactions when viral cytopathicity is varied from low to high. We
then introduced an increasing influx of NK cells (due to immunogenic cell death of infected tumor
cells) to the TME, to enable us to explore the possible effects of OV-induced NK cell response
in terms of impediment or augmentation of oncolytic virotherapy. A complete overview of the
major results of the model presented in Chapter 3 is as follows:

(a) Modeling tumor-OV interactions, in the absence of active NK cell response, demonstrated
that the success of oncolytic virotherapy depends heavily on the initial tumor size and the
tumor size when OV is administered into the system. Notably, it was shown Chapter 3 that
small tumors (with different initial observable sizes) treated with the same OV inoculum
respond differently. In accordance with previous mathematical models [75], we found that
OV used as a monotherapy cannot drive tumor to extinction, but rather, it could bring tumor
burden to some low level stable steady state.

(b) The role of NK cells, acting as immune surveillance effector cells against tumors, have been
demonstrated in several preclinical and clinical studies. In particular, an increasing number
of studies demonstrates that NK cells effectively attack tumors with low antigenicity (e.g.,
those with downregulated major histocompatibility complex (MHC) class I molecules) [5, 8–
11, 111], and free OV and OV-infected tumors. The induction of NK cells by OV infection,
within the TME, is often correlated with favorable treatment outcomes [26, 214]. Consistent
with previous mathematical models [75, 166], our simulations in Chapter 3 have demonstrated
that the time at which OV-induced NK cell antiviral response to OV infection is triggered
can lead to detrimental results in oncolytic virotherapy if NK cells are induced to early post
tumor treatment with OV. Taken together, our results suggest that NK cell recruitment
to the TME must take place neither too early nor too late in the course of OV infection
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to achieve therapeutic success with OV. Through both sensitivity analysis and numerical
simulations, we showed that NK cell responses are can make most influence on tumor growth
at either early (possibly leading to tumor escape because of rapid response of NK cells to
viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages
of oncolytic virotherapy. Furthermore, our model also predicts that:

(i) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak;

(ii) the recruitment of NK cells modulates tumor growth; and

(iii) the depletion of activated NK cells within the TME enhances the probability of tumor
escape in oncolytic virotherapy.

(c) Despite the contrary viewpoints that the induction of NK cells within the TME can either
hinder or complement OV antitumor efficacy, our numerical simulations suggest that OV-
induced NK cell response play a critical role in attaining enhanced therapeutic success with
oncolytic virotherapy. Thus, our results highlights the importance of understanding and
uncovering possible mechanisms that govern OV-induced NK-mediated immunity for OV-
infected tumor cells, and the need for understanding of attenuated or enhanced NK cell
recruitment in oncolytic virotherapy.

Limitations and future work: Despite the model’s utility in explaining how OV-induced NK
cell responses can improve virotherapy, we acknowledge there are some limitations that may
obscure the model predictions. Firstly, note that although the model simulations were not fitted
to any experimental data, most of the parameter estimates used were taken from previous models
that considered similar cell dynamics proposed in this study. It is therefore important to note
that the variability and uncertainty in the model parameters does not limit the mathematical and
computational analysis of this study, and the resulting analyses provide a simple framework for
further research into combined OV-NK cell-based virotherapies. Furthermore, OV injection times
considered in this model, though assumed from experiments in [42], may not be the optimal times
that could yield optimal timing of NK cell recruitment. Thus, optimizing the time for OV-induced
NK cell responses is needed to balance unwanted early OV clearance or premature removal of
OV-infected tumor cells and the required later antitumoral NK cell responses. Despite these
limitations, our mathematical model provides useful insights into the dynamics of NK cells that
may enhance the activity of OV in immunocompetent hosts. Importantly, our results suggest
that although OV-induced NK cell responses play a vital role in immune surveillance (see Fig. 5
in Chapter 3), NK cells alone cannot lead to long-term tumor control, and that an additional
immune surveillance arm (such as activated CD8+ T cells [5, 75, 164]) is need to account for the
long-term memory cell response (a key feature of adaptive immune cells such T cells and B cells
[140]). We need to emphasize that while the model considered in this study is very simple, at
least in its generic form, more complex dynamic interactions between OV, the tumor cells, NK
cells and other immune effector cells (e.g., CD8+ T cells) within the TME, will be considered
in future research. Also, optimal control approaches will be devised to determine the optimal
therapeutic times for OV-induced NK cell responses that provide maximal benefits in oncolytic
virotherapy.
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Collectively, our findings demonstrate that treating tumors with OV is important, not only to
cytoreduce tumor burden, but also to recruit stronger NK cell response that is necessary for
eradicating tumors or at least control tumor growth. Moreover, our mathematical modeling
framework supports the combinatorial therapies between OV and NK cells that are aimed at
improving treatment approaches whether OV and NK cells work together to eliminate tumor
growth and progression since there is currently an increasing need to examine NK cell responses
to oncolytic virotherapy.
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