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ABSTRACT

We perform Lie symmetry analysis to the fractional Black-Scholes option pricing model

whose price evolution is described in terms of a partial differential equation (PDE). As a

result, new complete Lie symmetry group and infinitesimal generators of the one-dimensional

fractional Black-Scholes pricing model are derived. Furthermore, we compute a family of

exact invariant solutions that constitute the pricing models for the Black-Scholes model using

the associated infinitesimal generators and the corresponding similarity reduction equations.

Using known solutions, more solutions are generated via group point transformations.
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INDEX OF ABBREVIATIONS

LHS: Left hand side.

RHS: Right hand side.

Iff: if and only if.
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FDM: Finite difference method.
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Chapter 1

Introduction and background

For centuries, financial option world was facing uncertainty and risks which were impossible

to analyse, until Black-Scholes (1973) came up with the Black-Scholes partial differential

equation (Black-Scholes PDE). This equation was used as a model of option pricing and it is

now famously considered in history of modern finance according to McKay [35]. The name

Black-Scholes came by an economist Robert Merton. However, the nature of Black-Scholes

equation

∂u

∂t
+
x2σ2

2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0, (1.1)

is named after two scientists: Fisher Black and Myron Scholes. According to Henderson [15],

these three scientists (Fisher Black, Myron Scholes and Robert Merton) worked together for

years leading to the publication of Black Scholes model in 1973. Years after the publica-

tion, Fisher Black, Myron Scholes and Robert Merton were awarded a Nobel Prize for their

excellent work. The extension of Black-Scholes was then handled by Mark German and

Steven Kohhagen in foreign currency option values [8]. After the discovery and extension

of this remarkable work, other researchers began investigating the existence of solutions of

Black-Scholes model(1.1) by implementing different methods [1–3,5, 10].

Fractional calculus began to show its significance by giving attention to various science and

engineering disciplines [11, 38]. As a result, many researchers fully participated and con-

tributed in this field. Moreover, the book by Mir Saijjad Hashemi and Dumitru Baleanu [12]
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has played an important part such as group analysis and exact solutions of fractional partial

differential equations in formulation of the subject. Considering the use of known fractional

derivatives such as: Grunwald-Letnikow, Riemann-Liouville ∂αu
∂tα

, Hadamard, Caputo and

Riesz, interesting results such as group analysis of time-fractional Fokker-Planck, Lie sym-

metry of time-fractional Fisher equation, Lie symmetry of time-fractional K(m,n) equation,

Lie symmetry of time-fractional gas dynamic equation, etc in relation to fractional differen-

tial equations can be found in this book and references therein.

Nowegian mathematician Marius Sophus Lie introduced Lie group analysis solutions involv-

ing ODEs and PDEs [32, 36]. He considered the use of variable transformations leading

to reduction of a differential equation in invariant form. Combining fractional calculus,

Black-Scholes and Lie symmetries, researchers such as [21, 22, 39, 43] were able to identify a

relationship between these methods and that led to implementation of mathematical tech-

niques for analysis involving these methods. Wyss et al [43] used fractional Black-Scholes

equation considering fractional derivatives to price European call option. Not only Wyss et

al considered the use of fractional Black-Scholes equation considering fractional derivatives to

price European call option, but also, Lina Song and Weiguo Wang [39] used Lie symmetries

with finite difference method technique to analyse solution of the fractional Black-Scholes

option pricing Model. In their work, Lina Song and Weiguo Wang [39] considered option

price u = u(x, t) subject to the time fractional Black-Scholes in the form:

∂αu

∂tα
= (ru− rx∂u

∂x
)

t1−α

Γ(2− α)
− Γ(1 + α)

2
σ2x2∂

2u

∂x2
t>0, 0<α ≤ 1, (1.2)

where r, α, Γ denote the risk free interest rate, volatility and Gamma function, respectively,

and ∂αu
∂tα

denotes the Riemann-Lioville [12].

Finite difference method as one of the methods used to solve PDEs was put in to establish the

importance of Lie symmetry in finance by implementing Lie symmetries to analyse the frac-

tional Black-Scholes option model. Lina Song and Wieguo Wang [39] modified this work by

combining Jumaries time-fractional Black-Scholes equation, the terminal and boundary con-

ditions satisfied by the standard put price to investigate the pricing problems for European
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and American put options based on a fractional derivative called modified Riemann-Lioville

fractional derivative ∂αu
∂tα

. In addition, Lina Song and Wieguo Wang [39] in their work stated

that, to get rid of arbitrage, the option value at each point in u(x, t) space should be greater

than the intrinsic value.

Recently, group invariant especially the Lie points symmetry have been put in financial mar-

ket [4,9,31]. To ascertain the use of Lie symmetry, however, fractional derivatives are of more

interest because of the computational techiques and procedures used in solving Black-Scholes

(1.1). Unlike classical derivatives, fractional derivatives use Riemann-Liouville definition for

computation. Huang et al [17] implemented Lie symmetry and exact solutions considering

the time fractional Harry-Dym equation with Riemann–Liouville derivative ∂αu
∂tα

. Applica-

tion of Lie symmetries is considered as an alternative way to solving PDEs. There are

many methods used to solve PDEs such as Finite Difference Method (FDM), Finite Element

Method (FEM), Adomain Decomposition Method (ADM) and methods of lines to name the

few. According to Qiu et al [33], non linear PDEs are more challenging but interesting in

this discipline. Due to sensational scope and applications in several studies, this has alarmed

the need to conduct research in attempt to analyze solutions especially in fractional Black-

Scholes.

Moreover, Chong et al [7] used fractional differential operator Riemann-Lioville derivative

∂αu
∂tα

to analyse Lie symmetries of fractional Black-Scholes equation. The main aim of Chong

et al’s work was to implement hedging strategy to minimize the risks in financial market,

constructing infinitesimal operators and obtaining results which were easy to interpret and

analyse. Invariant conditions were constructed then obtained determining equations which

were easily integrated to transform variable remaining to Riemann-Lioville fractional deriva-

tive operator ∂αu
∂tα

structure thus, spanning fractional Black-Scoles by vector fields [7]. Lie

point symmetries were also obtained but, due to compound and complicated infinitesimal

operators, only the first infinitesimal generator, X1 was considered. Chong also pointed out

in his work that, the solution obtained was trivial on financial perspectives, so the results

were compared and interpreted.
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Fascinating problems such as combination of Laplace perturbation method and homotopy

perturbation by Kumar et al [28], however, are observed in solving non linear PDEs in finan-

cial mathematics [33]. The effectiveness of this combination led to, not only accurate, but

also precise interpretable results to fractional Black-Scholes equation for European option

pricing problem with boundary conditions. Reduction of compound and complicated numer-

ical computations came as a result of incurred round off errors. For further analysis, they

employed two examples in their method and used He’s polynomials as well as converging

power series considering Black-Scholes equation (1.1) in two non linear fractional differential

equations to elucidate how effective their method was. To summarize, Laplace perturbation

method and homotopy perturbation bridles the deficiency generated by unsatisfied condi-

tions hence why it is very powerful and efficient in approximation and computing numerical

solutions in finance. Not only Jagdev et al [28] considered this strategy of solving frac-

tional Black-Scholes but also Kumar et al [27] used Homotopy perturbation method (HPM)

introduced by HE [13, 14]. Moreover, Homotopy analysis method (HAP) implemented by

Liao and Shi-Jun [29, 30] was also used to analyse numerical solution for time fractional

Black-Scholes with boundary conditions for European option problem. This method gave

well displayed results on HAP in comparison with HPM.

Kanth et al [24] presented FDTM (Fractional differential transform method) together with

MFDTM (Modified fractional differential transform method) for analysis of fractional Black-

Scholes European option pricing equation. These methods do not require restrictions, trans-

formation and discretization as compared to other methods discussed such as FDM, ADM,

HPM and VIM. ADM is complex since it requires computation of adomain polynomials and

errors are likely to occur during computation. The difficulty in VIM has an inherent inaccu-

racy on identifying the Lagrange multiplier, correctional functional and stationary conditions

for the fractional order. Also, a disadvantage of HPM is solving functional equation in each

iteration, which is sometimes complicated and unattainable [27]. Therefore, the proposed

FDTM and MFDTM are much easier when compared to ADM, VIM and HPM. The use of

FDTM and MFDTM turned to be much effective in consideration of boundary conditions
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and this effectiveness is summarized with the use of examples [24]. Since FDTM deals mainly

with Taylor series expansion for all variables, it encounters problems while considering non

linear functions. For this reason, MFDTM is used to reduce complications in solving non lin-

ear differential equations of fractional order in finance [27]. The issue of risks and uncertainty

in financial industry is not only uncontrollable but also compound and impossible to analyse.

Option in finance play an important role when it comes to good trading of assets, investment

and risks management. As a result, this issue has alarmed the need to conduct researches

in attempt to analyse the solution in fractional Black-Scholes using different mathematical

tools and methods. Upon the use of equation (1.2), the aim of this work is to extent and

implement Lie symmetry technique to solve fractional Black-Scholes option pricing model in

financial mathematics. Following the work by Song et al [39], we consider the use of option

price u subject to the time fractional Black-Scholes equation. Using this form of equation,

determining systems of equations are obtained, and from this system, resulting infinitesimals

are constructed. Making use of obtained determining equations, we compute the invariant

solutions of our family equation.

1.1 Aim of the study

In this work, we aim to price fractional Black-Scholes model by means of solving associated

fractional partial differential equation (FPDE) by making use of Lie symmetry analysis.

1.2 Objectives of the study

The objectives of the study are as follows:

• We first find the determining systems of equations of equation (1.2).

• Solve each system to find the infinitesimals.

• Use the resulting infinitesimals to find the invariant solution.

• Finally, graph the results and interpret them in relation to classical Black-Scholes equa-

tion(1.1).
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1.3 The work flow of the current study.

We start by stating useful functions and their basic properties in relation to fractional deriva-

tives and Lie symmetry in chapter 2. We continue by solving our family equation (1.2) in

chapter 3 using information from chapter 2 and then find the invariant solutions of equation

(1.2). In chapter 4 we give graphical representations of our solutions and interpretations

of the results obtained. We finally give the discussion and conclusion in chapter 5 which is

followed by MATLAB, Maple codes and proofs useful in this work found in section 5.
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Chapter 2

Mathematical Preliminaries

In this chapter, we give some definitions and basic properties that have been employed

throughout our dissertation. We define notions such as Riemann-Liouville ∂αu
∂tα

, Gamma

function, Black-Scholes, Lie symmetry, Lie brackets as well as Option pricing .

2.1 Definitions and Basic properties

Fractional calculus

2.1.1 Riemann-Liouville

Definition 1. Riemann-Liouville [12,38,44] of order α is defined by:

Dα
t u(t, x) =


1

Γ(m−α)

∫ t
0

u(ξ,x)
(t−ξ)α+1−m dξ 0<m− 1<α ≤ m,m ∈ N

∂nu
∂tn

α = n

where ∂αu
∂tα

denotes the αth fractional derivative and Γ denotes a Gamma function.

2.1.2 Gamma function

A well known mathematician L. Euler (1729) came up with a fascinating function know as

Gamma function represented symbolically by Γ(.). This function is used cooperatively with

factorial (!) of all positive real numbers R+.
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Gamma function

Upon the use of gnuplot 40 and MATLAB, the gamma fuction is shown on the figure below:

Figure 2.1: Gamma function along real axis

2.1.3 The Mittag-Leffler Function

Introduction

A Swedish mathematician [25] came up with an interesting function known as a Mittag-

Leffler funtion defined in terms of a power series as

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
α>0. (2.1)

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
α>0, β>0. (2.2)

Mittag-Leffler funtion is defined directly from the exponential function ex, which was futher

modified in 1950’s by R.P Agerwal [34].

Given x, α, β ∈ R, the following properties hold:

Properties

Eα,β(0) = 1,
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E1,1(x) =
∞∑
k=0

xk

Γ(k + 1)

=
∞∑
k=0

xk

k!

= ex,

E1,2(x) =
∞∑
k=0

xk

Γ(k + 2)

=
∞∑
k=0

xk+1

(k + 1)!

=
ex−1

x
,

E 1
2
,1(x) =

∞∑
k=0

xk

Γ(k
2

+ 1)

= ex
2

Erfc(−x) where Erf(x) =
2√
π

∫ x

0

et
2

dt x ∈ R.

2.1.4 Laplace transformation of fractional derivatives

The Laplace transformation of yn is given by [25]

L {yn} = snY − sn−1y(0)− sn−2y′(0)− ...− yn−1(0)

= snY (s)−
n−1∑
k=0

sn−k−1yk(0). (2.3)

We now define a fractional derivative of y(t) as

Dαy(t) = Dn(D−µy(t)). (2.4)

By letting n be the smallest integer greater than α>0 and µ = n− α, (2.4) becomes

Dαy(t) = Dn(D−(n−α)y(t)). (2.5)

Suppose that y(t) exists, now, taking the Laplace transform of (2.5) yields

L {Dαy(t)} = L {Dn(D−(n−α)y(t))}

= snL {D−(n−α)y(t)} −
n−1∑
k=0

sn−k−1Dk(D−(n−α)y(t))|t=0

9



= sn[s−(n−α)Y (s)]−
n−1∑
k=0

sn−k−1Dk−n+αy(0)

= sαY (s)−
n−1∑
k=0

sn−k−1Dk−n+αy(0). (2.6)

For n = 1, 2, (2.6) reduces to (2.7) and (2.8) respectively

L {Dαy(t)} = sαY (s)−D−(1−α)y(0) for 0<α ≤ 1. (2.7)

L {Dαy(t)} = sαY (s)− sD−(2−α)y(0)−D−(1−α)y(0) for 1<α ≤ 2. (2.8)

In this work however, we are interested in the value of α such that 0<α ≤ 1.

Below is the summary table of Laplace transform parts useful in this work, where b 6= a are

real constants and α, β>0.

Laplace transform pairs

y(t) y(t) = L −Y (S)

1
sα

tα−1

Γ(α)

1
(s−a)(s−b)

eat−ebt
a−b

1
sα−a tα−1Eα,α(atα)

1
sα(s−a)

tαE1,α+1(at)

a
s(sα+a)

1− Eα(−atα)

sα−β

sα−a tβ−1Eα,β(atα)

1
(s+a)α

tα−1e−at

Γ(α)

sα

s(sα+a)
Eα(−atα)

sα−β

(s−a)α
tβ−1

Γ(β)
F1(α; β; at)
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2.1.5 Basic definitions in relation to Lie symmetry analysis of a fractional dif-

ferential equation

∂αu

∂tα
= F (x, t, u, ux, uxx, ...) 0<α ≤ 1. (2.9)

One-parameter Lie group of transformations are represented by:

t̄ = t+ εξ1(x, t, u) +O(ε2),

x̄ = x+ εξ2(x, t, u) +O(ε2),

ū = u+ εφ(x, t, u) +O(ε2),

∂αū

∂tα
=
∂αu

∂tα
+ εφ0

α(t, x, u) +O(ε2),

∂ū

∂x
=
∂u

∂x
+ εφx(t, x, u) +O(ε2),

∂2ū

∂x2
=
∂αu

∂x2
+ εφxx(t, x, u) +O(ε2),

where φx and φxx are defined as:

φx = Dx(φ)− utDx(ξ
1)− uxDx(ξ

2), (2.10)

φxx = Dx(φ
x)− utxDx(ξ

1)− uxxDx(ξ
2), (2.11)

φxxx = Dx(φ
xx)− uxxtDx(ξ

1)− uxxxDx(ξ
2), (2.12)

and the total derivatives are:

Dt =
∂

∂t
+ ut

∂

∂v
+ utt

∂

∂ut
+ uxt

∂

∂ux
+ ...

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ ...

The infinitesimal generator X of equation (2.9) can be expressed as

X = ξ1(x, t, u)
∂

∂t
+ ξ2(x, t, u)

∂

∂x
+ φ(x, t, u)

∂

∂u
, (2.13)

where ξ1, ξ2 and φ are infinitesimals to be determined.

X is said to be a symmetric generator of (2.9) provided the prolongation

Prα,2X(4)|4=0 = 0 where 4 =
∂αu

∂tα
− F (x, t, u, ux, uxx). (2.14)
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The αth Prolongation operator Prα,2 takes the form

Prα,2 = X + φ0
α

∂

∂tαu
+ φx

∂

∂vx
+ φxx

∂

∂uxx

= ξ1(x, t, u)
∂

∂t
+ ξ2(x, t, u)

∂

∂s
+ φ(x, t, u)

∂

∂t
+ φ0

α

∂

∂tαu
+ φx

∂

∂ux
+ φxx

∂

∂uxx
. (2.15)

Also αth infinitesimal has the form

φ0
α = Dα

t + ξ2Dα
t (ux)−Dα

t (ξ2ux) +Dα
t (Dt(ξ

1)u)−Dα+1
t (ξ1u) + ξ1Dα+1

t (u), (2.16)

where Dα
t is the total fractional derivative operator.

By Leibniz rule [12], we have that (2.16) reduces to

φ0
α =

∂αφ

∂tα
+(φu−αDt(ξ

1))
∂αu

∂tα
−u∂

αφu
∂tα

+
∞∑
n=1

[(
a

n

)
∂αφu
∂tα

−
(

a

n+ 1

)
Dn+1
t (ξ1)

]
Dα−n
t (u)−

∞∑
n=1

(
a

n

)
Dn
t (ξ2)Dα−n

t (ux) + µ] (2.17)

,where,

µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
a

n

)(
n

n

)(
k

r

)
tn−α

Γ(n+ 1− α)
(−u)r

∂m

∂tm
(uk−r)

∂n−m+k

∂tn−m∂uk
,

note that µ = 0 since ∂kφ
∂uk

= 0 for k > 2, here the infinitesimal φ is linear in the variable u

and µ.

Some useful properties of fractional derivative operator

For any 0<α ≤ 1 and functions f, g being the αth differentialble functions at a point t>0 [?],

the following are equivalent:

1. Dα[af(t) + bg(t)] = aDα[f(t)] + bDα[g(t)] ∀ a, b ∈ R.

2. Dα[f(t)g(t)]=f(t)Dα[g(t)] + g(t)Dα[f(t)].

3.Dα[f(t)
g(t)

]=g(t)Dα[f(t)]−f(t)Dα[g(t)]
[g(t)]2

.

4. For f(t)=tx, Dα[f(t)]=xtx−α, ∀x ∈ R.

5. Dα[c]=0, for c being a constant.

6. Dαy(t)=Dn(D−µy(t))

12



2.1.6 Group invariant solution

Just like partial differential equations (PDEs), the invariant solution of a frational differential

equation is defined by considering a function u = u(x, t) which is said to be an invariant

solution under fractional differential equation in relation to the infinitesimal operator (2.13)

iff

ξ1(u, x, t)ut + ξ2(u, x, t)ux = φ(u, t, x).

With assumption that ξ1, ξ2 not being zeros, we make use of a characteristic method:

dt

ξ1
=
dx

ξ2
=
du

φ
. (2.18)

Letting two arbitrary differentiable funtions p(u, x, t) and q(u, x, t) with qu 6= 0 be indepen-

dent first integral functions of (2.18), we turn to have a general solution of the invariant

condition as q = F (p). We then solve for F by substituting this solution into our original

FDE (1.2). One should note that the resulting equation after substitution may either be

solvable or not solvable depending on the nature of an equation obtained.

Definition 2. A function u = θ(x, t) is said to be an invariant solution of (2.9) with respect

to the infinitesimal (2.13) iff the following hold:

1. u = θ(x, t) satisfies (2.9),

2. u = θ(x, t) is a solution of (2.9).

2.1.7 Lie algebra

Definition 3. [36] Given a vector space over a field F, we define a Lie algebra as
[
,
]

and

it is denoted by L. Given a bilinear commutation law, the following properties have to be

satisfied:

1. closure: For X,Y ∈ L, we have that
[
X, Y

]
∈ L.

2. Bilinearity :
[
X,αY + βZ

]
=α
[
X, Y

]
+ β

[
X,Z

]
, where α, β ∈ F and X, Y, Z ∈ L.

3. Jacobi identity:
[
X,
[
Y, Z

]]
+
[
Y,
[
Z,X

]]
+
[
Z,
[
X, Y

]]
= 0.

4. Skew-symmetry:
[
X, Y

]
= −

[
Y,X

]
.
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2.1.8 Introduction on Black-Scholes and fractional Black-Scholes equation

In this section, we give brief definations of Black-Scholes equation(1.1) and fractional Black-

Scholes equation(1.2) and how they relate. All the information in this section is extracted

from Jiang and Lishang [20].

Black-Scholes equation(1.1)

Black-Scholes equation is defined as a second order partial differential equation. Black-

Scholes equation is said to be of much importance in financial mathematics since it minimizes

risks such as hedging.

Definition 4. The general European call or put options on an underlying stock paying no

dividends. Black-Scholes PDE is stated as follows

∂u

∂t
+
x2σ2

2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0,

where u(s, t) is European option price, r is risk free rate, x is the stock price and σ is volatil-

ity of the stock.

Assumptions of Black-Scholes by Hull [18].

1. Securities can be sold short with full use of proceeds.

2. There are no transaction costs or taxes. All securities are perfectly divisible.

3. There are no dividends paid during the life of the contract.

4. Risk-less arbitrage opportunities are not permissible.

5. Securities are traded continuously.

6. The risk-free interest rate, r, is constant throughout the life of a security.

The Black-Scholes equation is derived using Ito’s formula, the derivation of Black-Scholes

equation(1.1) is clearly shown step-by-step in [20]. Howevere, our main focus in this work,

is the fractional order of Black-Scholes equation. We consider the fractional part of the

derivatives, that is, non integer order say α. One can clearly see that, when α = 1 in equation

(1.2), we have a Black-Scholes PDE. This is how classical Black-Scholes and fractional Black-

Scholes(1.1) relate.

14



fractional Black-Scholes equation

Definition 5. In general, fractional Black-Scholes equation of order α is defined as;

∂αu

∂tα
+
x2σ2

2

∂2u

∂x2
+ rx

∂u

∂x
− ru = 0,

Just like Black-Scholes equation PDE(1.1), there are several approaches used to derive the

fractional Black-Scholes PDE such as, equation of evolution approach by Wyss et al [42],

fractional Taylor series method by Kumar [28] and Laplace Homotopy Perturbation approach

by Jumarie et al [23]. Employing definitions, 4, 5 and making use of equation (1.2) by [39],

in this work, we solve equation (1.2) by means of Lie symmetry. Our main focus is also on

European option pricing.

2.1.9 Financial derivative

A financial derivative or a contingent claim is defined as a contract whose value is determined

by the value of an underlying asset. There are several tools used in financial derivatives, to

name the few, we have risk, arbitrage, volitality, etc Obeng [37].

Financial derivative tools [18]

Risk: is defined in portfolio as a variance of the return.

Arbitrage: is defined in finance as a way of making surplus without taking risks.

Volitality: σ is assumed to be a constant and it is defined as a measure of change in price

over a given period or it is a measure of the rate of fluctuations in the price of a security

over time. There are two major approaches of estimating volitality namely: historical and

implified volitality. Historical volitality is defined as a measure of a stock’s price movement

on historical prices. whereas, implified volitality is a percentage that explains the current

market price by reflecting the volitality that option traders expect for the return to the

underlying asset during the life of an option Chiu [6]

2.1.10 Option pricing

Definition 6. According to Lishang Jiang [20], an option is referred to as an agreement that

offers a holder to buy from or sell to, the seller of the option, an amount of an underlying
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asset sometimes referred to as financial securities. The buying and selling of assets can

happen at a specific future time but the buyer, however, has no obligation to exercise the

contract or an agreement. We define an exercise as buying or selling an asset according

to the option contract or agreement. The specified price is called a strike price while the

specified date is referred to as an expiration date.

The following definitions and types of an option by Lishang Jiang are useful in option pric-

ing.

Types of options

1. Call option.

2. Put option.

Call option is defined as a contract to buy at a specified future time a certain amount of

an underlying asset at a specified price. While, a put option is a contract to sell a certain

amount of an underlying asset at a specified price in future time.

In option pricing, European and American options are referred to as terms of an exercise

in a contract. European option is therefore defined as an option that can be exercised only

proir to expiration date while an American option can be exercised on or prior to expiration

date. Interesting examples and definitions are defined and explained in details on option

pricing in [20] and references therein.

European option pricing and call-put assumptions by Lishang Jiang [20]

1. The market is arbitrage free.

2. All transactions are free of charge.

3. The risk-free interest rate is constant.

4. The underlying asset pays no dividends.

In general, if the price of an underlying asset at time T is ST , the price of an option VT , then

there exist a function V (S, t) such that VT = V (ST , t).

Where V (S, t) is deterministic fuction of tow variables.
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We define call CT and put PT of an option in relation to the price of an underlying asset ST

and the expiry date t = T as:

CT = (ST − k)+ call option,

PT = (k − ST )+ put option,

Where k denotes the strike price, T denotes expiration date and ST denotes the price of an

underlying asset at theexpiration date t = T

European put is considered as a solution of (1.1) with the following terminal and boundary

conditions.

P (s, T ) = max(K − S, 0),

P (0, t) = max(k − S, 0),

P (s, t)→ 0, S → +∞.

According to Ecem Herguner [16], For European call option initial and boundary condition

of Black-Scholes PDF(1.1) for s ∈ (0,∞) and t ∈ (0, T ) is

C(s, T ) = max(S −K, 0),

C(0, t) = 0,

C(s, t) ≈ s and x → ∞. where K is the strike price, T is the expiration date and C(s, T )

and P (s, T ) are the values of the option at time T when the option matures.

The above equations can be illustrated graphically as follows:

17



Figure 2.2: Call and Put options rough sketch demonstration

The above figure 2.2 represents the rough sketch option payoff where: (i) is a long call, (ii)

is short call, (iii) is long put and (iv) short put. As per graphs above, since the buyer has

no obligation to exercise the contract, options can be costing because one can make riskless

profit by getting into long positions.

Common terms used in option Theory [41]

1. Premium.

The initial amount paid for the option.

2. Short position.

A negative amount of a quantity.

3. Long position.

A positive amount of a quantity.
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4. At the money.

An option is at the money if the price of an underlying asset has leveled up close to the

strike price.

5. Intrinsic value.

The payoff that would be received if the underlying asset is at its current level when the

option expires.

6. In the money.

An option with a positive intrinsic value. A call option is in the money when the asset price

is above the strike price.

7. Out of the money.

An option without any intrinsic value or with intrinsic value equal to 0. A call option is out

of the money when the price of the underlying asset is below the strike price.
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Chapter 3

Lie symmetries applied to fractional

Black-Scholes model

This chapter is mainly on applying the information previously provided on chapter 2. We

first compute the determining system of equations, then find the Lie algebras using properties

provided in section 2.1.7. With the aid of some appropriate properties from section 2.1.5, we

construct invariant solutions to our problem using the information provided in section 2.1.6.

3.1 Introduction

In this section, we employed equation (1.2) given by [39], then use group invariant, especially,

Lie points symmetries where new complete Lie symmetry group and infinitesimal generators

of the one dimensional fractional Black-Scholes pricing model are derived and then, the

determining system of equations are obtained.

The value of European put option is taken as a solution of equation(1.2) with the following

terminal and boundary conditions:

u(x, T ) = max(k − x, 0),

u(0, t) = kexp(−r(T − t)),

u(x, t) =→ 0 x→ +∞,

where T, r, x represent expriration time, risk free interest and stock price respectively.
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Determination of Lie symmetries

In this section, we make use of the fractional Black-Scholes equation (1.2)

∂αu

∂tα
= (ru− rx∂u

∂x
)

t1−α

Γ(2− α)
− Γ(1 + α)

2
σ2x2∂

2u

∂x2
t>0, 0<α ≤ 1

where r, σ and Γ denote the risk free interest rate, volatility and Gamma function respec-

tively. ∂αu
∂tα

by [12] denotes the Riemann-Lioville and it is defined as:

Dα
t u(t, s) =


1

Γ(m−α)

∫ t
0

u(ξ,S)
(t−ξ)α+1−m dξ 0<m− 1<α ≤ m,m ∈ N

∂nu
∂tn

α = n

The vector field:

X = ξ1(x, t, u)
∂

∂t
+ ξ2(x, t, u)

∂

∂x
+ φ(x, t, u)

∂

∂u
(3.1)

is the symmetry generator of (3.1) provided:

Prα,2X
(∂αu
∂tα
−
(

(ru− rx∂u
∂x

)
t1−α

Γ(2− α)
+

Γ(1 + α)

2
σ2x2∂

2u

∂x2

))∣∣∣
(1.2)

= 0 (3.2)

Considering the Lie theory and imposing (1.2) into (2.15) we have the following invariant:

φ0
α + (rxux − ru)(1− α)

t−α

Γ(2− α)
ξ1 + rx

t1−α

Γ(2− α)
φx +

Γ(1 + α)

2
σ2x2φxx − t1−α

Γ(2− α)
rφ

+
t1−α

Γ(2− α)
ruxξ

2 + Γ(1 + α)σ2xuxxξ
2 = 0 (3.3)

Now substituting (2.10),(2.11)and (2.17) into (3.3) yield the following:

∂αφ

∂tα
+ (φu − αDt(ξ

1))
∂αu

∂tα
− u∂

αφu

∂tα
+
∞∑
n=0

[(
a

n

)
∂αφu
∂tα

−
(

a

n+ 1

)
Dn+1
t (ξ1)

]
Dα−n
t u

∞∑
n=1

(
a

n

)
Dn
t (ξ2)Dα−n

t ux − (ru− rxux)(1− α)
t−α

Γ(2− α)
−

rxt1−α

Γ(2− α)

[
φx + ux(φu − ξ2

x)− u2
xξ

2
u − utξ1

x − uxutξ1
u

]
+

Γ(1 + α)σ2x2

Γ(2− α)
[φxx+ux(2φxu−ξ2

xx)+uxx(φu−2ξ2
x)+u2

x(φuu−2ξ2
xu)−u3

xξ
2
uu−ξ1

u(utuxx+2uxuxt)
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− 3uxuxxξ
2
u − 2uxtξ

1
u − utξ1

xx − 2uxutξ
1
xu − u2

xutξ
1
uu]

t1−αrξ

Γ(2− α)
− t1−αruxφ

2

Γ(2− α)
−

Γ(1 + α)σ2xuxxξ
2 = 0 (3.4)

Using Maple [33] and Maple Package FracSym routine FracDet and DESOLVEII 19 to get a

system of determining equations and symmetry for the FDE of equation (1.2), we considered

the value 2 as our forth argument for a calling sequence in FracSym worksheet package. The

main purpose for this is to provide and obtain good balance between the information for the

solution of determining equation and the speed at which they are obtained. The procedure

and use of Maple code is shown in appendix 5

NOTE: The forth argument which can be an integer greater or equal to 1 is assigned to the

number of terms to be “peeled off” from the sums which occur in the extended infinitesimal

function for the fractional derivative 19 . Below is a list of determining equations which are

linear and homogeneous PDEs where the subscript denotes the derivative with respect to

the given variable:

φuu = 0 (3.5)

αξ1
t = 0 (3.6)

αξ1
u = 0 (3.7)

x2σ2Γ(α + 1)ξ2
u = 0 (3.8)

x2σ2Γ(α + 1)ξ2
x = 0 (3.9)

x2σ2Γ(α + 1)ξ1
u = 0 (3.10)

x2σ2Γ(α + 1)ξ2
uu = 0 (3.11)

x2σ2Γ(α + 1)ξ1
uu = 0 (3.12)

αξ2
u(α− 1) = 0 (3.13)

αξ1
u(α− 1) = 0 (3.14)

αξ2
tu(α− 1) = 0 (3.15)

αξ1
tu(α− 1) = 0 (3.16)

αξ1
uu(α− 1) = 0 (3.17)
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αξ2
uu(α− 1) = 0 (3.18)

αξ1
tt(α− 1) = 0 (3.19)

αξ2
u(α− 1)(α− 2) = 0 (3.20)

x2σ2Γ(α + 1)ξ2
u(α− 1) = 0 (3.21)

αξ2
tu(α− 1)(α− 2) = 0 (3.22)

αξ2
uu(α− 1)(α− 2) = 0 (3.23)

α(ξ2
tuu)(α− 1)(α− 2) = 0 (3.24)

α(−αξ2
tt) + 2φtu + ξ2

tt(α− 1)(α− 2) = 0 (3.25)

α(ξ2
uuu)(α− 1)(α− 2) = 0 (3.26)

xσ2Γ(α + 1)(αx(ξ2
t )− 2ξ1

x + 2ξ2) = 0 (3.27)

1

Γ(2− α)

[
x(−Γ(2− α)Γ(α + 1)φuuσ

2x+ 2Γ(2− α)Γ(α + 1)ξ1
uxσ

2x+ 2t1−αξ1
ur)
]

= 0

(3.28)

(α− 1)α(−αξ2
ttt) + 3φtu + 2ξ2

ttt = 0 (3.29)

1

Γ(2− α)

[
x2σ2Γ(1 + α)ξ2

xxΓ(2− α) + 2αrut1−αξ2
u + 2rxt1−αξ2

x

]
= 0 (3.30)

1

Γ(2− α)
x
[
−Γ(2− α)Γ(α + 1)ξ2

uxσ
2x+ t1−αξ2

uαr − t1−αξ2
ur
]

= 0 (3.31)

1

Γ(2− α)
[−2x2σ2(Γ(α+1)φuxΓ(2−α)+x2σ2Γ(α+1)ξ1

xxΓ(2−α)+2ξ2rxt−αα−2(α)rxt1−αξ2
t

− 2ξ2rxt−α + 2rxt1−αξ1
x − 2ξ1rt1−α)] = 0 (3.32)

The Auxiliary conditions which include the sums and fractional derivative terms from this

system are simply obtained using FracSym and the resulting equations are as follows;

ξ2(x, 0, u) = 0 (3.33)

1

2tαΓ(2− α)
[x2σ2Γ(α+ 1)

∂2

∂x2
φtαΓ(2− α)− 2αrut

∂

∂x
ξ2 − 2u

∂α+1

∂t2∂u
φtαΓ(2− α) + 2φ2ruα

+ 2
∂

∂u
φrut+ 2ruxt

∂

∂x
φ+

∂α

∂tα
φtαΓ(2− α)− 2ξ2ru− 2φ] = 0 (3.34)
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∞∑
n=3

[− 1

n+ 1

(
α

n

)
Dtα−nuDtn+1ξ2α−Dtα−nuDtn+1ξ2n+Dtα−n

∂

∂x
uDtnξ

1n+Dα−n
t

∂

∂x
uDtnξ

1]

+
∞∑
n=3

[(α
n

)
∂n+1

∂tn∂u
ξDtα−nu

]
= 0 (3.35)

Using DESOLVII to solve equations (3.5)-(3.32) we get the following infinitesimals for our

FDE:

ξ1 = xc1, (3.36)

ξ2 = 0, (3.37)

φ = β(x, t) + uc4. (3.38)

Upon substitution of equations (3.36)-(3.38) into (3.34) and (3.35) to check whether auxiliary

conditions are satisfied, we get:

ξ2(x, 0, u) = 0 (3.39)

1

2tαΓ(2− α)

[
x2σ2Γ(α + 1)

∂2

∂x2
(β(x, t) + uc4)tαΓ(2− α)− 2αrut

d

dt
0− 2u

∂α+1

∂tα∂u
B(x, t)

+uc4t
αΓ(2−α)+2

∂

∂u
(β(x, t)+uc4)rut+2rxt

∂

∂u
(β(x, t)+uc4)+2

∂α

∂tα
(B(x, t)+uc4)tαΓ(2−α)

− 2(B(x, t) + uc4)rt
]

= 0 (3.40)

∞∑
n=3

[
− (

1

n+ 1
)
[(α
n

)[
Dtα−n(u(x, t))Dtn+1(0)α− (Dtα−n(u(x, t))Dn+1

t (0)n)

+Dtα−n(
∂

∂x
(u(x, t)))Dtn(xc1)n+Dtα−n(

∂

∂x
u(x, t))Dn

t (xc1)
]]]

+

∞∑
n=3

(
α

n

)
∂n+1

∂tn∂u
(β(x, u) + uc4)Dtα−n(u(x, t)) = 0 (3.41)

Equations (3.40) and (3.41) evaluated yield (3.42) and (3.43) respectively

1

2tαΓ(2− α)

[
x2σ2Γ(α + 1)

∂2

∂x2
(B(x, t))tαΓ(2− α)− 2αuc4pochhammer(1− α, α)tα

Γ(2− α) + 2c4rut+ 2rxt
∂

∂x
B(x, t) + 2

( ∂α
∂tα

(B(x, t) + uc4pochhammer(1− α, α)
)

tαΓ(2− α) + uc4)rt
]

= 0 (3.42)
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− 1

α(α− 1)(α− 2)
6

(
α

3

)
(Dtn(xc1)

(
− α2

2
+ 2α − α

2
− 1
)
Dtα−n

( ∂
∂x
u(x, t)

)
)

+Dtn+1(0)
(
Dtα−n(u(x, t))

(
− α3

6
+ 2α − 5α

6
− 1
)))

= 0, (3.43)

where pochhemmer is defined as rising or ascending factorial and in symbols, it is written

as:

(a)0 = 0,

(a)1 = a,

(a)2 = a(a+ 1),

(a)3 = a(a+ 1)(a+ 2),

...

(a)n = a(a+ 1)(a+ 2)...(a+ n− 1),

or

(a)n =
Γ(a+ n)

Γ(a)
. (3.44)

The term (a)n follows from the hypergeometric series or functions.

We can easily see that (3.39) is satisfied, thus;

0 = 0. (3.45)

Equation (3.42) and (3.43) are satisfied for total derivatives of Dtn1 and Dt1+n1 for some n1.

Therefore the final symmetries of our FDE is obtained as:

ξ1 = xc1, (3.46)

ξ2 = 0, (3.47)

φ = β(x, t) + uc4, (3.48)

where c1, c4 are arbitrary constants and β(x, t) is an arbitrary solution of equation (1.2).

Now, imposing (3.46)-(3.48) into (3.1), we have the symmetry generator given by:

X = xc1
∂

∂x
+
(
β(x, t) + uc4

) ∂
∂u
. (3.49)
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The symmetries are obtained by setting one constant to 1 and the rest to zero, so in vector

form, equation (1.2) is spanned by the vector fields:

X1 = x
∂

∂x
, (3.50)

X2 = u
∂

∂u
, (3.51)

Infinite symmetry:

X∞ = β(x, t)
∂

∂u
(3.52)

Assumptions of the solution process

Upon using DESOLV11 package, the following non zero and linearly independent assump-

tions are obtained:

non-zero assumptions:

α, r, σ, t, x, tα, α(α−1), tαΓ(2−α), α(α−1)(α−2), xσΓ(α+1), xα ln(x), σx(α−1)Γ(α+1),

α− 2, α− 1, Γ(2− α), Γ(α + 1).

Linealy independent assumptions:

1,t,tα

Obtaining Lie algebra

Below is a summury table Lie algebra obtained from commutators (3.50), (3.51) and (3.52)

and we represent this in a form [Xi, Xj] for some i, j = 1, 2,∞:

Table 3.1: Lie algebras

[Xi, Xj] X1 X2 X∞
X1 0 0 xβx

∂
∂u

X2 0 0 −β(x, t)
X∞ -xβx

∂
∂u

β(x, t) 0
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Invariant solution

Using the information from section 2.1.6, we find the invariant solution.

Now consider the combination of X1 and X2 from equation (3.50) and (3.51) that is X1 +

X2 = x ∂
∂x

+ u ∂
∂u

. With the use of the information on section 2.1.6, we have the following

characteristic equation

Characteristic equation

dt

0
=
dx

x
=
du

u
. (3.53)

From the second and third ratio on (3.53), we have that;

ln(u)− ln(x) = ln(c1),

=⇒ ln
(u
x

)
= ln(c1),

=⇒ u

x
= c1,

=⇒ u = xc1,

where c1 is an arbitrary constant. From the first ratio on (3.53), we have that t = c2, for

some constant c2.

∴ u = xg(c2)

= xg(t). (3.54)

To solve for g(t), we substitute equation (3.54) into (1.2) and get the following results:

∂αg(t)

∂t
= 0. (3.55)

With the use of the information from [25], we now consider the Laplace transform Method

from section 2.1.4 to solve for g(t) on (3.55).

L {∂
αg(t)

∂t
} = 0

=⇒ sαG(S)−D−(1−α)y(0) = 0 0<α ≤ 1 (3.56)

Assume D−(1−α)y(0) exists such that D−(1−α)y(0) = c3, thus (3.56) can be written as

SαG(S)− c3 = 0
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=⇒ G(S) =
c3

sα
. (3.57)

Using the information from 2.1.4, we take the inverse Laplace transform of (3.57) to get

g(t) =
c3t

α−1

Γ(α)
. (3.58)

Now, considering the symmetry X1 given by (3.50), we have the following characteristic

equation.

Characteristic equation

dt

0
=
dx

x
=
du

0
. (3.59)

The first ratio and the last ratio do not necessarily mean division by zero. Since t and u

have similarity variable from (3.59), it suffice to write u = g(t). Substitution of u into (1.2)

yields:

Dα
t g(t) = rg(t)

t1−α

Γ(2− α)
. (3.60)

Solving for g(t) from (3.60), the solution is trivial for α = 1, that is

g(t) = kert for some constant k. (3.61)

However, we are interested in finding the solution for all values of α such that 0<α ≤ 1. Up

to our knowledge and findings, equation (3.60) is not solvable.
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Chapter 4

Results and interpretation.

4.1 Introduction

In this chapter, we give graphical solutions of option prices under the fractional Black-Scholes

model of obtained solutions (3.58) and (3.61) using the same parameters for plotting and

then plot the call and put option solutions within a given range. We finally make use of the

results obtained from figure 4.1 to figure 4.9 and interpret how our work contributes in call

and put option pricing in financial mathematics.
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4.1.1 Graphical solutions

4.1.2 Graphical solution of g(t) = c3tα−1

Γ(α)
in the xy-plane

Figure 4.1: A 5x5 plot of (3.58) with 0<α ≤ 1 on the xy-plane.

figure 4.1, shows graphical solution g(t) (3.58) obatined by Lie symmery method at 0<t<10.

Where 0<α ≤ 1, r = 0.01, σ = 0.01 and stock price varies from 0 to 5.

The development trend of figure 4.1 is similar to that of a put option of a classical Black-

Scholes equation(1.1) as well as the numerical solution graph in [39].

4.1.3 Graphical solution of g(t) (3.58) on 3D

Below is the graphical illustration of (3.58) in 3D with α = 0.5.
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Figure 4.2: 60x60 solution of (3.58) with 0<α ≤ 1 on 3D

4.1.4 Graphical solution of (3.61) in the xy-plane

Figure 4.3: Solution of (3.61) with r = 2 on the xy plane.
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4.1.5 Graphical solution of (3.61) on 3D-plane

Below is a 3D plot of equation (3.61).

Figure 4.4: 60x60 solution of (3.61) with r = 2 on 3D
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4.1.6 Call and Put option pricing plots

Figure 4.5: A put plot with s = 10, σ = 0.1, r = 0.1

Figure 4.6: A call plot with s = 10, σ = 0.1, r = 0.1
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Figure 4.7: Call and Put plot with s = 10, σ = 0.1, r = 0.1

Now, considering a portfolio that invests α in the underlying asset and β in the risk free

asset, the value of a portfolio is as follows

P (0) = αS(0) + βB(0).

Re-writting Black-Scholes formula as:

∂u

∂t
+
x2σ2

2

∂2u

∂x2
+ rx

∂u

∂x
= ru− rx∂u

∂x
, (4.1)

the LHS of (4.1) above contains a time decay term, while the RHS is a riskless return. Using

the definitions of call and put options in section 2.1.10, the put option will have the highest

worth when the stock price is zero and as we can buy it at zero.

As per figure 4.1 to 4.7, the best place to put the stock will be when the stock worth is

minimum, we see that from figure 4.7, put value saturates after long interval, at which the

call value is very high, so to buy at this time could be cheaper.

Figure 4.8 and 4.9 below show a numerical solution of European and American put and call

options of a Classical Black-Scholes model (1.1). The shape and development trend of this

figures is similar to that of figure 4.1 and figure 4.3 respectively. The graphs of figure 4.8 and

4.9 below show one straight line and three curves. The dashed red straight line (together
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with a part of the x axis) represents the payoff function of a European option with stock price

= 60, rate of interest = 0.1, volitality = 0.5 and expiration time = 0.3. The orange curve

represents the values of a standard European option, the blue curve a standard American

option, and the green curve the perpetual (time-independent) option. In general, fractional

Black-Scholes model seem to be more powerful in financial mathematics. Figure 4.8 and 4.9

were plotted using wolfram [26].

European and Americam call option

Figure 4.8: Call option plot with s = 60, σ = 0.5, r = 0.1

European and Americam put option

Figure 4.9: Put option plot with s = 60, σ = 0.5, r = 0.1
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Chapter 5

Discussions and conclusions

In this work, Lie symmetry technique was implimented to solve time fractional Black-Scholes

equation. Our objective was achieved since we were able to compute the determining equa-

tion which were obtained using Maple package fracSym. Moreover, upon solving each de-

termining equation obtained, we constructed the infinitesimals which led to obtaining two

invariant solutions. The invariant solutions obtained are constructed through the use of char-

acteristic equation system. The style of solving characteristics equation in this discipline is

not unique, so, we first considered the combination of X1 and X2 that is X1 + X2 which

gave us solvable equation and hence fascinating results. However, considering X1 alone gave

us trivial solution when α = 1 which reflected a good trend in relation to call option of a

classical Black-Scholes (1.1), but our main concentration was on fractional order of deriva-

tives, that is, we considered 0<α ≤ 1. So for this interval 0<α ≤ 1, the result obtained

was not solvable. Considering the value of α = 1 on equation (1.2) led to an underlying

classical Black-Scholes equation (1.1). However, as per the graphs and results obtained, as

we increases α, the risk free interest rate r increases as well. So, a decrease in α led to

a decreace in the risk. In addition, when the stock price decreases, the risk also rises as

volitality also rise when α<1. This results in a negative skewness in stock returns, so, as we

decrease α, local volitality rises and this indicates that x and u are negatively correlated to

each other, which also results in negative skewness in stock return. In general, as we increase

the stock price x, there is an increase in the leverage effect. Comparing solutions of g(t)
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(3.58) obtained with numerical solution from [39] show how powerful fractional derivatives

are. The successful application of Lie symmetry to solving fractional Black-Scholes equation

proves how much effective and less computation our method is. However, further work is

needed and will be of more interest on modeling other financial derivatives such as index

return swaps, contract of difference and warrant.
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Appendix

Definition 7. For complex number z with R+ the Gamma function is defined as:

Γ(z) =

∫ ∞
0

xz−1e−xdx for some z ∈ R+.

The integral above converges absolutely for R >0. With the use of Gamma function formular,

we have the following theorems.

Theorem 5.0.1. Γ(z + 1) = zΓ(z).

Proof. Let z ∈ R+, for this proof we substitute the value z + 1 where we see z on Γ(z) and

apply integration by part together with L’Hopitals rule.

Γ(z + 1) =

∫ ∞
0

xze−xdx = −xze−x
∣∣∣∞
0

+

∫ ∞
0

zxz−1e−xdx

= lim
x→∞

(−xxe−x)− (oze0) + z

∫ ∞
0

xzz−1e−xdx

since −xze−x → 0 as x→ 0, then we have that

Γ(z) = z

∫ ∞
0

xz−1e−x

= zΓ(z)

Theorem 5.0.2. Γ(z) = (z − 1)!

Proof. Using the results obtained in ??, the proof is as follows;

Γ(z) = (z − 1)Γ(z − 1)

= (z − 1)(z − 2)Γ(z − 2)

= (z − 1)(z − 2)...3 · 2 · 1 · Γ(1)
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= (z − 1)!

It can be easly shown that Γ(1) = 1 by using definition 7.

This section consists of proofs , codes used to find plot figures, finding determining equations

and infinitesimals.

Figure 1

Matlab Code

1 syms x

2 f p l o t (gamma( x ) )

3 g r id on

4 t i t l e (”Gamma func t i on ”)

Figure 2

Matlab Code

1 c l f

2 t = 0 : 0 . 0 1 : 1 0 ;

3 s=t ;

4 sigma =0.1;

5 r =0.1 ;

6 alpha =0.5;

7 alpha4 =0.55;

8 alpha1 =0.3 ;

9 alpha5 =0.35;

10 alpha2 =0.4 ;

11 alpha3 =0.45;

12 c3 =3;

13 T=1;
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14 f o r i=length ( alpha )

15 y2=c3 .∗ t . ˆ ( alpha ( i ) −1) . /gamma( alpha ( i ) ) ;

16 p lo t ( y2 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha ) ] )

17 hold on

18 end

19 f o r i=length ( alpha1 )

20 y3=c3 .∗ t . ˆ ( alpha1 ( i ) −1) . /gamma( alpha1 ( i ) ) ;

21 p lo t ( y3 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha1 ) ] )

22 hold on

23 end

24 f o r i=length ( alpha2 )

25 y4=c3 .∗ t . ˆ ( alpha2 ( i ) −1) . /gamma( alpha2 ( i ) ) ;

26 p lo t ( y4 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha2 ) ] )

27 hold on

28 end

29 f o r i=length ( alpha3 )

30 y5=c3 .∗ t . ˆ ( alpha3 ( i ) −1) . /gamma( alpha3 ( i ) ) ;

31 p lo t ( y5 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha3 ) ] )

32 hold on

33 end

34 f o r i=length ( alpha4 )

35 y6=c3 .∗ t . ˆ ( alpha4 ( i ) −1) . /gamma( alpha4 ( i ) ) ;

36 p lo t ( y6 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha4 ) ] )

37 hold on

38 end

39 f o r i=length ( alpha5 )

40 y7=c3 .∗ t . ˆ ( alpha5 ( i ) −1) . /gamma( alpha5 ( i ) ) ;

41 p lo t ( y7 , t , ’ DisplayName ’ , [ ’ g ( t ) f o r \alpha=’ , num2str ( alpha5 ) ] )

42 hold o f f
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43 end

44 l egend ( ’ l o c a t i o n ’ , ’ bes t ’ )

45 xlim ( [ 0 5 ] )

46 x l a b e l ( ’ s tock p r i c e ’ )

47 ylim ([−1 5 ] )

48 y l a b e l ( ’u (x , t ) ’ )

49 hold o f f

50 t i t l e ( ’ g ( t ) ’ )

Figure 3

Matlab Code

1 c l f

2 syms t d

3 c=sym (3) ;

4 S = sym(30) ; % cur rent s tock p r i c e ( spot p r i c e )

5 K = sym(95) ; % e x e r c i s e p r i c e ( s t r i k e p r i c e )

6 alpha= sym ( 0 . 1 ) ; % v o l a t i l i t y o f s tock

7 T = sym(3/12) ; % exp i ry tme in years

8 %r = sym ( 0 . 1 ) ; % annua l i zed r i s k −f r e e i n t e r e s t r a t e

9

10 syms T S

11 C = c∗T. ˆ ( alpha −1) . /gamma( alpha ) ;

12 f s u r f (C, [ 5 0 140 0 0 . 2 5 ] )

13 x l a b e l ( ’ Spot p r i c e ’ )

14 y l a b e l ( ’ Expiry time ’ )

15 z l a b e l ( ’u (x , t ) ’ )

16 t i t l e ( ’ $g{ t}=\ f r a c { c3t ˆ{\ alpha −1}}{{\Gamma (\ alpha }) }) $ ’ , ’

I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 16)

17 co l o rba r ;
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Figure 4 code

Matlab Code

1 c l f%i f needed , t h i s c l e a r s the prev ious subplot

2 t=l i n s p a c e ( 0 . 2 , 5 , 1 0 0 ) ;

3 r =2;

4 k = 0 : 0 . 2 : 1 ;

5 f o r i =1: l ength ( k )

6 y=k ( i ) ∗exp ( r ∗ t ) ;

7 p lo t ( t , y , ’ DisplayName ’ , [ ’ k=’ , num2str ( k ( i ) ) ] )

8 hold on

9 end

10 l egend ( ’ l o c a t i o n ’ , ’ bes t ’ )

11 x l a b e l ( ’ time ( t ) ’ )%l a b e l x−a x i s

12 y l a b e l ( ’u (x , t ) ’ )% l a b e l y−axes

13 g r id on

14 t i t l e ( ’ $g ( t )=keˆ{ r t }$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 16)

Figure 5 code

Matlab Code

1 syms t d

2 k=sym (3) ;

3 S = sym(30) ; % cur rent s tock p r i c e ( spot p r i c e )

4 K = sym(95) ; % e x e r c i s e p r i c e ( s t r i k e p r i c e )

5 alpha= sym ( 0 . 1 ) ; % v o l a t i l i t y o f s tock

6 T = sym(3/12) ; % exp i ry tme in years

7 r = sym ( 0 . 1 ) ; % annual i zed r i s k −f r e e i n t e r e s t r a t e
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8

9 syms T S

10 C = k∗exp (T∗ r ) ;

11 f s u r f (C, [ 5 0 140 0 0 . 2 5 ] )

12 x l a b e l ( ’ Spot p r i c e ’ )

13 y l a b e l ( ’ Expiry time ’ )

14 z l a b e l ( ’u (x , t ) ’ )

15 t i t l e ( ’ $g ( t )=keˆ{ t r }$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 16)

16 co l o rba r ;

Figure 6,7 and 8

Matlab Code

1 s = 10 ;

2 k=3;

3 T=1;

4 sigma =0.1;

5 r =0.1 ;

6 q=0;

7 [ c , p ] = BSM( s , k ,T, sigma , r , q ) ;

8

9 f i g u r e (1 )

10 p lo t ( c , ’ o ’ )

11 t i t l e (” Ca l l Plot ”)

12 y l a b e l ( ’ Ca l l va lue ’ )

13 x l a b e l ( ’ Range ’ )

14

15 f i g u r e (2 )

16 p lo t (p , ’ ro ’ )

17 t i t l e (” Put Plot ”)
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18 y l a b e l ( ’ Put value ’ )

19 x l a b e l ( ’ Range ’ )

20

21 f i g u r e (3 )

22 p lo t ( c , ’ bo ’ )

23 hold on

24 p lo t (p , ’ ro ’ )

25 t i t l e (” Cal l−Put Plot ”)

26 y l a b e l ( ’ va lue s ’ )

27 x l a b e l ( ’ Range ’ )

28

29 f unc t i on [ c , p]=BSM( s , k ,T, sigma , r , q )

30 d1=sigma∗ s q r t ( 0 . 5 ) \( l og ( s /k ) + ( r−q+sigma ˆ2/2) ∗T) ;

31 d2 = d1 − sigma∗ s q r t (T) ;

32 c = s ∗exp(−q ∗0 . 5 ) ∗normcdf ( d1 )−k∗exp(−r ∗T) ∗normcdf ( d2 ) ;

33 p = k∗exp(−r ∗T) ∗normcdf(−d2 )−s ∗exp(−q∗T) ∗normcdf(−d1 ) ;

34 X = [ ’ Ca l l : ’ , num2str ( c ) ] ;

35 Y = [ ’ Put : ’ , num2str (p) ] ;

36 di sp (X) ;

37 di sp (Y) ;

38

39 end

Below is how we implimented and ran the code to find the determining equations of (1) and

its infifnitesimal. This is done in maple software using FracSym package [19,33]

restart;

Instructional workheet for the FracSym package

G. F. Jefferson and J. Carminati

Read in accompanying packages: ASP, DESOLVII and initialise using the with command:
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read ‘ASP v4.6.3.txt‘:

DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J.

Carminati and Miss G. Jefferson

The authors kindly request that this software be referenced, if it is used

in work eventuating in a publication, by citing the article:

K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised

symmetries of differential equations

using the MAPLE package DESOLVII,Comput. Phys. Commun. 183

(2012) 1044-1054.

-------------

ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati

The authors kindly request that this software be referenced, if

it is used in work eventuating in a publication, by citing

the article:

G.F. Jefferson, J. Carminati, ASP: Automated Symbolic

Computation of Approximate Symmetries

of Differential Equations, Comput. Phys. Comm. 184 (2013)

1045-1063.

with(ASP);

[ApproximateSymmetry, applygenerator, commutator]

with(desolv);

[classify, comtab, defeqn, deteq_split, extgenerator, gendef,

genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv, reduceVar,

reduceVargen, symmetry, varchange]

Read in FracSym and initialise using the with command:
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read ‘FracSym.v1.16.txt‘;

FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati

The authors kindly request that this software be referenced, if it is used in

work eventuating in a publication, by citing:

G.F. Jefferson, J. Carminati, FracSym: Automated symbolic

computation of Lie symmetries of fractional differential equations, Comput. Phys. Comm.

Submitted May 2013.

with(FracSym);

[Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet,

fracGen, split]

BASIC OPERATORS

The Riemann-Liouville fractional derivatives is expressed in "inert" form using the

FracSym routine Rfracdiff.

The explicit formula for the form of these fractional derivatives may be found in I.

Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications, San Diego, 1999.)

Rfracdiff(u(x, t),t,alpha);

If the fractional derivative is taken for a product, the generalised Leibnitz rule

is used to express the result (the product operator used is &* and is non-commutative).
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Rfracdiff(u(x, t)&*v(x,t),t,alpha);

Fractional derivatives of integer order revert to the MAPLE diff routine.

Rfracdiff(u(x, t)&*v(x,t),t,2);

The FracSym rouine TotalD may also be used to find total derivatives. evalTotalD is

then used to evaluate the result (in jet notation). For example,

TotalD(xi[x](x, y),x,2);

fde1:=Rfracdiff(u(x,t),t,alpha)=r*u*((t^(1-alpha))/Gamma(2-alpha))-r*x*((t^(1-alpha))

/Gamma(2-alpha))*(diff(u(x,t),x))-((x^2)*(sigma^2)*((Gamma(1+alpha))/2)*(diff(u(x,t),

x,x))); t>0;

We use the the FracSym routine fracDet to find the determining equations for the

symmetry for fde1.

NOTE: The fourth argument (some integer at least 1) corresponds to the number of terms

to be "peeled off" from the sums which occur in the extended infintesimal function for

the fractional derivative. A value of 2 provides a good balance between information for solution of determining equations and speed.

deteqs:=fracDet([fde1],[u],[x,t],2);

Intervals/values considered for the fractional derivative/s:

{0 < alpha, alpha < 1}

n1:=nops(%[1]);

n1 := 29
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The output is as follows: the first list contains the determining equations which are

linear, homogeneous PDEs. The second list contains "auxiliary conditions" which

include sums and fractional derivative terms. The third list contains the infinitesimal

functions to be solved. The fourth list contains all variables. We may solve the first

list using the DESOLVII pde solver:

sol1:=pdesolv(expand(deteqs[1]),deteqs[3],deteqs[4]);

We check that these solutions satisfy the auxiliary conditions:

subs(sol1[3],deteqs[2]);

value(%);

The second and third conditions are satisfied for total derivatives

"D[t^n1], D[t^(1 + n1)]"

The first condition implies:

subs(t=0,sol1[3]);

rhs(%[2])=0;

0=0

Hence, the final symmetry for the FDE is:

subs(%,[sol1]);

Which can be expressed in vector form using DESOLVII’s genvec routine as

genvec(%[3],%[4],[x,t,u]);

classify();
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