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Abstract 

Electricity demand forecasting is an important process in the planning and operation of the 

electricity industry. Providing uninterrupted energy to consumers requires electricity demand to 

be predicted accurately. This study utilizes ABB Nostradamus short-term demand forecasting 

software, which accepts historical demand data, days of the week, time of the year and Lesotho 

public holidays for electricity demand forecasting. It produced day-ahead, week-ahead and hour-

ahead electricity demand forecasting results with 3.06%, 4.06% and 5.09% accuracy. These 

MAPE results are close to or within the acceptable 5% accuracy for short-term demand 

forecasting, and provide crucial confidence levels for LEC to engage in power pool trading in the 

SAPP market for optimal power procurement.  

LEC utilizes bilateral agreements with LHDA, Eskom and EDM to supply the electricity 

demand. During the high demand season, bilateral imports from Eskom and EDM costs LEC 

around 3.27 Million US Dollars (M49 Million) which is twice the money incurred (1.60 Million 

US Dollars (M24 Million)) during the low demand season. Compared to the average SAPP 

DAM, IDM and FPM-W prices, Eskom’s 20 USc/kWh peak cost is higher than SAPP’s 12 

USc/kWh DAM and IDM, and 13 USc/kWh FPM-W peak charges. Again, EDM’s 4 USc/kWh 

off-peak cost is higher than SAPP’s 3 USc/ kWh DAM, IDM and FPM-W off-peak charges. The 

study therefore recommends bilateral contracts use to meet intermediate demand of around 103 

MW. For demand above 103 MW, utilizing SAPP market can assist to reduce bulk purchases 

costs.  
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1. Introduction 

1.1 Background 

A stable and reliable electrical system depends on the balance between supply and demand. 

Electricity demand forecasting and electricity supply planning are crucial to attain such a 

balance. Nonetheless, developing countries face major challenges in performing electricity 

demand forecasting. These challenges from the studies conducted by Adeoye and Spataru [1] and 

Steinbuks [2] in 2019 include lack of quality data, electricity supply and demand gap, political 

instability, economic and weather conditions and technological changes and their transition. 

Such countries often utilize basic and simple electricity demand forecasting methods that are 

based on staff’s experience and often yields inaccurate demand projections.   

For instance, in Lesotho’s situation, the national utility, Lesotho Electricity Company (LEC), 

performs demand forecasting using Excel Spreadsheet referred to as a schedule. This schedule is 

based on the historical data that is obtained from 30-minute average data generated from the 

supervisory control and data acquisition (SCADA) system and is sent to the local 72 MW 

Lesotho Highlands Development Authority (LHDA) hydropower generation station on a 

monthly basis. The LHDA then sets the generators accordingly to meet the demand. This 

schedule lacks the intelligence regarding the parameters1 that can influence such electricity load 

forecast.   

LEC has also subscribed to the Southern African Power Pool (SAPP) competitive market in 

order to perform trading. As far as trading is concerned, LEC is only selling electricity to the 

pool but does not purchase any. Such dual trading would be hampered by the rudimentary 

forecasting that does not incorporate weather, time and holiday effects as the accuracy of such 

forecasting is compromised due to lack of inclusion of these parameters. Therefore, such 

forecasting is not effective to enable LEC to engage in trading in the SAPP market, leaving it to 

rely on bilateral agreements with Eskom (South Africa) and EDM (Mozambique). Thus, a more 

accurate and automated forecasting system, incorporating weather forecasts, time and holiday 

effects, is required by LEC to perform trading in the SAPP market. 

                                                           
1 The parameters that are of interest in the study include things like weather conditions, public 

holidays, electricity price and season as well as time effects. 
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1.2 Problem Statement  

In 2018, LEC obtained short-term demand forecasting system called Nostradamus from ABB 

that came with SCADA system upgrade. This software is automated to produce the electricity 

demand forecast after it has been trained. It is currently used sparingly and on an ad-hoc basis 

while LEC still maintains the manual demand schedule based on spreadsheet, despite the 

availability of this automated demand forecasting system.  

The utility has bilateral agreement of 30 MW with Eskom and an annual agreement of 20 MW 

with EDM, in addition to the 72 MW obtained from LHDA. The main challenge is that LEC gets 

charged at the peak rate for the entire year by Eskom, if the peak demand spikes beyond the 30 

MW value anticipated in the agreement. Regardless of whether this spike occurred for only 30 

minutes, Eskom’s charge for electricity usage remains unchanged for the next 12 months, unless 

a higher peak is reached. LHDA, on the other hand, schedules the electricity delivered to LEC 

with the amount of water being sent to South Africa. This means that when LHDA reduces the 

water supply to prevent excess water flow, the amount of electricity produced and dispatched to 

LEC is reduced. In this instance, LEC is then required to source electricity from other SAPP 

utilities. Mostly, it gets this power from Eskom at an extra cost of penalties or it pays wheeling 

charges to Eskom.  

It is evident that lack of adoption of an automated and intelligent electricity demand forecasting 

results in non-optimal procurement of power through fixed bilateral contracts that may not be 

cost-effective and thus leading to higher tariffs for the final consumer. These challenges have 

motivated and triggered this study to be undertaken to investigate how an automated short-term 

electricity demand forecasting can be introduced in LEC to assist in effective and optimal power 

procurement through the regional SAPP market. Hence, the study seeks to show that the 

adoption of the short-term demand forecasting for LEC is crucial for trading in the SAPP 

market2. Moreover, the study seeks to identify and evaluate the benefits that will result from 

participation in the regional power trading.  

1.3 Objectives  

The objectives of the research are as follows: 

                                                           
2 The SAPP trading markets that are applicable for this study include intra-day, day-ahead and 

week-ahead 
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 To produce accurate hour-ahead, day-ahead and week-ahead  electricity forecasting for 

LEC using Nostradamus software, 

 To use the Nostradamus electricity forecasting results to illustrate the fact that LEC can 

perform trading in the SAPP market, 

 To perform a comparative analysis of SAPP competitive market and bilateral agreements 

to determine the cheaper electricity procurement option. 

The research is expected to answer this main question: 

How can an automated and accurate short-term electricity demand forecasting help LEC to 

trade in the power pool market such as SAPP? 

The main question is broken down into the following sub-questions: 

1. How does LEC procure electricity? 

2. What is the accuracy of Nostradamus short-term demand forecasting? 

3. How does SAPP trading compare with bilateral trading? 

1.4 Rationale for the study 

The motivation for doing the study has been attributed to the fact that the literature around short-

term electricity load forecasting suggests that accurate short-term load forecasting is crucial for 

the planning of power generation and purchasing of electricity. The study looks at the case of 

LEC and tries to illustrate the feasibility of SAPP trading. Moreover, a comparative analysis of 

SAPP market and bilateral agreements is undertaken to find a cheaper purchasing option. The 

knowledge generated by this study can be generalized to other developing countries as the 

challenges and opportunities faced by developing countries around producing accurate short-

term load forecasting are generally the same.  

The foreseen benefits of the study are: 

 Increased awareness of benefits of producing an accurate short-term load forecasting 

using a modelling software in developing countries like Lesotho 

 Inform the relevant authorities regarding importance of short-term electricity load 

forecasting in performing trading activities in the power pool and the supply strategies 

that can be adopted. 
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 Contribution to the body of knowledge in the area of load forecasting in developing 

economies around short-term load forecasting and power generation and electricity 

markets. 

1.5 Outline of the Thesis 

The research thesis comprises six chapters. Chapter 1 covers the background, problem statement, 

objectives and motivation for undertaking the research. Chapter 2 deals with the discussions of 

the existing literature related to short-term load forecasting trends, advantages, factors affecting 

electricity demand forecasting, forecasting techniques, artificial neural network for short-term 

load forecasting and load forecasting and the electricity market. Chapter 3 deals with the 

research methodology that will be adopted to undertake the study. The focus will be on data 

collection methods and analysis using the Nostradamus software to perform demand forecasting. 

Chapter 4 deals with the discussions and interpretation of Nostradamus demand forecasting 

results for the hour-ahead, day-ahead and week-ahead forecasting. Chapter 5 deals with the 

analysis of the results obtained in chapter 4 with the emphasis on comparative analysis of 

bilateral agreements that LEC uses to procure electricity against the procurement of the 

electricity from the SAPP competitive market which LEC can take advantage of. Lastly, chapter 

6 deals with the conclusion and recommendations that are based on the results and their analysis 

performed in chapters 4 and 5.  
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2. Literature Review / Theory 

2.1 Overview  

Every electricity utility strives to supply its customers with quality electricity in a secured, 

safe and economical manner. Since electricity is a non-storable commodity [3]–[5] unlike 

petrol, diesel and gas, or requires an expensive solution for storage, it must be generated each 

time there is a demand for it.  Thus, it is vital that the demand be predicted in advance. The 

prediction of future demand is referred to as demand forecasting. This is vital since it 

provides the prediction of future electricity demand. Moreover, having an understanding of 

the profile of electricity demand is vital for electricity producers as it aids in sustaining 

continuous, reliable and secure access to electricity [6]. Demand forecasting is done based on 

the past demand and weather data comprising the present and predicted weather and social 

aspects as well [7]. 

Accurate electricity load forecasts result in huge savings in operation and maintenance costs 

and improves the reliability of the electricity system [8]. Moreover, accurate demand 

forecasting aids the electricity utility around decisions regarding generation, selling and 

purchasing of electricity [7]. Also, having an accurate electricity demand forecasting 

facilitates scheduling, maintenance, adjustment of tariff rates and contract evaluation that are 

essential in power system operations [9].  

In the electricity market, having precise electricity demand forecasting is important since 

electricity demand is the main driver of electricity prices [10]. Thus, the economy of the 

participants in the electricity market is extensively affected and dependent on efficient, fast 

and accurate demand forecasting [11]. With the deregulation of the electricity industry 

globally, having demand forecasting has become crucial for system operators, transmission 

owners, market operators and other market participants including IPPs. This aids in ensuring 

the scheduling of satisfactory energy transactions, creation of proper electricity bidding 

strategies and the operational plans [12].  

2.2 Emerging Trends  

Precise electricity demand forecasting translates to improved financial performance of the 

market participants and the electricity utility [10]. This is because having successful 

transactions in the electricity market requires submission of competitive bids. Thus, accurate 

demand forecasting is fundamental for market participants to increase their profits [13]. This 
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means electricity market operators rely on the demand forecasting information in order to 

prepare their corresponding bidding strategies. This results in performing better electricity 

transactions in the electricity market [14].  

Demand forecasting is even more crucial in deregulated environment because of energy loss, 

market share loss as well as decrease in shareholders values that results from unanticipated 

escalating operations costs [15]. Similarly, with fluctuations in electricity demand and supply, 

changes in weather conditions and ever increasing energy prices during peak times, demand 

forecasting is vital for electricity utilities and market participants [16]. 

Load forecasting is classified into three forms: short-term load forecasting, medium-term load 

forecasting and long-term load forecasting. Short-term load forecasting ranges from an hour 

to a week. Medium term ranges from a week to a year while long-term load forecasting 

ranges from a year to 20 years. Although the focus of this study will be on short-term load 

forecasting, it is important to take a look at the other two forecasting methods. This will result 

in the appreciation of the importance and value of short-term load forecasting.  

Long-term demand forecasting is used in the planning department for power system planning 

and tariff regulation [17]. Long-term capital investment requires long-term demand 

forecasting more especially when making decisions regarding plant and infrastructure 

investment [18]. It is again crucial during strategic planning that involves capacity expansion. 

Medium-term demand forecasting is used in the transmission, distribution and trading 

departments. Scheduling unit maintenance3, energy trading and revenue evaluation all require 

medium-term demand forecasting [17]. It is also applicable in  arranging maintenance 

schedule, planning for power outages and engaging in power system upgrades4 [19], [20].  

However, for load flow5 analysis and estimation, transfer and switching of the electricity 

load, medium and long-term demand forecasting are not applicable. These tasks require 

short-term demand forecasting. Short-term demand forecasting is also beneficial in balancing 

electricity demand and supply and for security, reliability and quality of electricity supply 

[21]. Moreover, short-term demand forecasting provides prediction of future load more 

                                                           
3 Unit maintenance here refers to maintenance of the generation units such as generators. 
4 The power system upgrades form the major work in the power system. 
5 Analysis and estimation of load flow helps prevent overloading and the power system from 

suffering major disturbances [21] and thus limiting occurrences of equipment failures and 

blackouts. This leads to improvement of network reliability. Analysis and estimation of the 

load flow as well as transfer and switching of electricity load are used during daily operations 

of the electricity utility. 
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accurately as opposed to the other two methods [22]. At this point, the focus for the 

remainder of the study will be on short-term demand forecasting. 

2.3 Short-term Load Forecasting Advantages  

Short-term load forecasting is used for scheduling electricity generation and electricity 

production and transmission planning that involves unit commitment, allocation of spinning 

reserves and dispatching of the generation units in an economic manner6 [10], [23], [24]. 

Short-term demand forecasting is also used during load management and power interchange 

which are required by systems operators [11]. It is also used to set the schedule for the energy 

transfer and in the real-time control of the electrical system [23].  

Liberalization of the electrical markets promotes participation of many agents which leads to 

competition7 amongst the market players [25]. This results in less costs for the final 

consumer. Thus, short-term demand forecasting plays a vital role in reducing the operations 

costs of the electrical system. The importance of short-term demand forecasting is even more 

realized since the emergence of balancing market and during power exchanges [26]. 

Increasing the share of renewable energy into the electricity supply mix also requires precise 

short-term demand forecasting. This leads to reduction in greenhouse gas emissions in the 

atmosphere, thus conforming to Paris Agreement [25]. 

In determining the best approach in utilization of electricity utility resources, short-term 

demand forecasting is used in conjunction with information concerning wheeling transactions 

and availability of the transmission facilities [27]. In addition, generation cost, spot market 

energy pricing and spinning reserves are also crucial during determination of the best strategy 

for utilizing utility resources [27].  Thus, short-term demand forecasting is useful in the 

management and maintenance of the generation units8 [28]. In addition, short-term demand 

forecasting is used by dispatchers in scheduling short-maintenance and performing cross-

border trade [29]. Again, short-term load forecasting helps electricity utilities in maximizing 

revenues and minimizing operational and environmental costs [2]. This results from 

optimization of the amount of power generated by the utilities.  

                                                           
6 In economic dispatching of generation units, the least cost generator is dispatched first and 

the costliest unit is dispatched last. 
7 Increase in competition amongst electricity market players results in economic development 

of a country or a region 
8 The generation units include transformers and generators. The maintenance of these units 

can be tied to the generation schedule so that the generation units as well as the switch gears 

that are not in use during the demand supply can be maintained. 
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Short-term load forecasting is also used in determining the capacity required to meet the 

anticipated demand [6], [30] as well as the level of electrical energy provisioning needed for 

achieving such demand. In addition, automatic generation and control as well as distribution 

of the load in a cost-effective way relies on having an accurate and efficient short-term load 

forecasting [30]. Short-term load forecasting is used by operations engineers during network 

feature analysis which includes most importantly an optimal power flow [29]. 

2.4 Factors Affecting Electricity Demand Forecasting 

Since demand forecasting results in the prediction of future consumption pattern, it is 

important to take into consideration time effects, economic factors, weather effects and 

customer type during the demand forecasting process [17], [31]–[34].  

2.4.1 Time Effects 

Time effects have significant impact on the electricity demand and hence the daily demand 

curve. These comprise calendar parameters, seasonal parameters and seasons of the year. 

Calendar parameters include  day of the week and time of the day while seasonal parameters 

consist of calendar holidays, daily and weekly cycles [32], [34]. The daily demand curve is 

periodic and reflects the customer consumption behavior for different hours during the day. 

This translates to the daily lifestyle of the customers such as their working, leisure and 

sleeping hours [31], [34].  

2.4.2 Economic Factors 

The load curve is also influenced by economic factors that include industrial development, 

population growth, Gross Domestic Product (GDP), cost of electricity, individuals buying 

capability and time of use [17], [31], [33], [35]. Although the economic factors have more 

importance when dealing with long-term forecasting, they also have an impact on the demand 

curve for short-term demand forecasting. For example, time of use (TOU) and cost of 

electricity have more impact on short-term electricity demand forecasting. Individual buying 

capability (purchasing power) and the cost of electricity contribute greatly to medium-term 

forecasting.  GDP, industrial development and population growth influence long-term 

forecasting. 

As far as time of use is concerned, the TOU pricing has an impact on changing the duration 

and the time of occurrence of a peak load. For instance, countries can introduce cheaper 

electricity at night than during the day, thus making the night peak to vanish. The cheaper 

electricity can be stored in heat storage equipment for use during the day to warm houses and 
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buildings. Thus, TOU pricing can influence domestic as well as industrial consumers to 

adjust their load and this aids in peak shaving [17], [31]. Therefore, for short-term electricity 

demand forecasting, TOU pricing is an important factor to consider since this alters the daily 

load curve. This results in reduction of the daily average load. 

Cost of electricity and individuals purchasing power have an impact on electricity usage and 

ultimately on the daily load curve. This is because, as the electricity becomes expensive, its 

use by domestic users will decrease hence reducing the maximum demand. Therefore, 

economic factors comprising TOU pricing, cost of electricity, management of load and 

degree of industrialization have a huge impact on system average load and system maximum 

demand. 

2.4.3 Weather Effects 

Weather factors are widely used for short-term demand forecasting and include the following 

[17], [31], [33]: 

 Temperature 

 Humidity 

 Wind speed 

 Cloud cover 

 Precipitation or dew point 

Weather prediction is the most complicated task due to its variable nature and tends to exist 

for a short period of time in an area. It is crucial to consider the weather factors when dealing 

with short-term load forecasting so as to minimize the operational costs. This results from an 

improved forecasting accuracy that results from the combination with other factors like 

historical demand, time factors and economic factors. The effect of weather is mostly noticed 

for domestic and agricultural consumers. However, it can also change the load profile of 

industrial consumers as well. 

2.4.3.1 Temperature 

Temperature is the measure of the degree of hotness or coldness of a body [31] or the 

measure of warmness or coolness of the atmospheric air in a particular area at a particular 

time [33]. Temperature is the most important and influential factor and has a major impact 

and strong relationship with the electricity demand [31], [33], [34], [36]. During winter when 

the temperature drops, individuals require more energy to keep warm. Moreover, during 
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summer when the temperature rises, individuals require more energy to lower the 

temperature. Both scenarios results in an increase in the electricity consumption. This 

suggests that there is positive correlation between temperature and electric load curve in 

summer months and negative correlation between the temperature and electric load curve in 

winter months [17], [31], [33], [36]. 

This relationship is confirmed by Figure 1 which shows the demand peaking during the 

summer (having highest temperatures) and winter (having the lowest temperatures) periods 

[36]. This is further strengthened by Figure 2 which shows the plot of electricity demand 

against the temperature. From Figure 2, it can be deduced that the relationship between 

electricity demand and temperature is non-linear, increasing both for decreasing and 

increasing temperatures [36]. 

 

Figure 1 Monthly Evolution of Electric Load and Temperature Index (TI)[36] 

 

Figure 2 Variation of the total daily electricity load in Spain with Temperature Index[36] 
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2.4.3.2 Humidity 

Humidity is the amount or the presence of water vapors in the air [31], [33]. Humidity has an 

effect on short term load forecasting due to the fact that it increases the feeling of severity of 

temperature during summer and rainy days [17]. This makes electricity consumers to use 

more cooling appliances thus increasing the electricity demand which has an impact on the 

daily load curve. When dealing with electricity consumers from domestic to industrial, the 

temperature humidity index is recommended to be used as the impacting factor for load 

forecasting [31]. 

2.4.3.3 Wind Speed 

Wind speed is the measure of the motion of air with respect to the surface of the earth 

covering a unit distance per unit time [31]. Like temperature and humidity, wind speed also 

has an effect on electricity consumption. During the windy summer day, the fact that the 

human body feels comfortable at those temperatures results in less cooling appliances being 

used thus reducing electricity consumption. Moreover, during windy winter day, it becomes 

colder for the human body to accommodate, thus requiring heating appliances to be used. 

This increases the electricity consumption and hence increases the electricity demand. 

2.4.3.4 Cloud Cover 

Cloud cover is defined as the mass of cloud over all or most of the sky [33]. It is important to 

also consider the effect of cloud coverage on demand forecasting. The cloud cover effect on 

electricity consumption depend on the time of the day. During the day time especially in 

summer periods, the cloud cover lowers the temperature thus resulting in low consumption of 

electricity. During the day in winter, the cloud cover reduces the temperature. This requires 

electricity consumers to use heating appliances which increases the electricity consumption. 

However, it also has an impact on light intensity in that the intensity is lowered as the clouds 

block most of the sunlight. This causes consumers to use electric bulbs to light their houses 

which increases electricity consumption. Hence, for short term load forecasting, cloud cover 

effects on temperature and light intensity should be considered in order to perform an hour or 

day ahead load forecasting [31]. This will improve the accuracy of the short term load 

forecasting model. 

2.4.3.5 Precipitation or dew point 

Precipitation is defined as the amount of rain, snow or hail fallen at a specific place within a 

specific period of time which is expressed in inches or centimeter of water [31]. It has a direct 

and indirect effect on electricity consumption. The direct effect is realized from the fact that 
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heavy rain or snow causes individuals to stay at home hence are likely to consume more 

electricity during lighting and entertainment purposes. Its indirect effect is with regards to the 

temperature which in turn has an effect on electricity consumption. During short term load 

forecasting, precipitation must be considered so as to predict the load accurately. If 

precipitation is not taken into account, the forecasted load may be overestimated or 

underestimated resulting in huge loss to the utility due to over generation or load shedding 

due to under generation.  

2.5 Forecasting Techniques  

Several short-term demand forecasting techniques have been used for the past years. The 

techniques are classified into three categories [37]: time series techniques, artificial 

intelligence techniques and hybrid techniques as depicted in Figure 3. Time series techniques 

such as Auto Regressive Moving Average (ARMA) and Auto Regressive Integrated Moving 

Average (ARIMA) are the most popular techniques for demand forecasting [28]. These use 

previous demand data for predictions of the next hour’s load. Other time series techniques 

include linear regression and sessional autoregressive [37]. 

 

Figure 3 Load forecasting methods comprising short-term, medium-term and long term 

methods [29] 

Since future electricity loads are complex and are nonlinear function of previous load and 

temperature data, time series techniques do not yield good and precise prediction. This is 

because electricity loads are affected by weather conditions, economic factors and time 
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factors [8], [10], [38]. Thus, time series techniques do not produce accurate forecasting since 

they do not accommodate these factors. 

Therefore, to address the challenges of time series techniques, the artificial intelligence 

techniques have been introduced to forecast the electricity loads. These techniques include 

expert systems, fuzzy logic, artificial neural networks, echo-state networks and support vector 

regression. Artificial neural network, although includes more factors for forecasting, has 

drawbacks such as learning-process that is time consuming [28] and there is over-training of 

the model [37]. 

Thus, in order to improve the accuracy of the forecasting model, a hybrid technique is used. 

In this study, the ABB Nostradamus demand forecasting software9 is used to produce 

forecasting results. It uses a hybrid model that comprises ANN, smoothing techniques, 

regression technique and dynamic learning [39]. Nostradamus uses inputs such as demand, 

weather parameters and calendar information [39]. This is done to improve the accuracy of 

the forecasting software. Therefore, it is of utmost importance to review the work that is done 

by other researchers to perform short term load forecasting using ANN and incorporating 

several input variables in order to support such choice. 

Short term load forecasting (STLF) using ANN to forecast half-hourly electricity load 

demand was performed for Tunisia incorporating historical load, calendar information and 

weather conditions [6]. The study used the hybrid model that implements MLP and 

Levenberg-Marquardt ANN to perform the short-term demand forecasting.  The results 

showed that Levenberg-Marquardt algorithm performed well in forecasting half-hourly 

electricity demand with MAPE ranging between 1.1% and 3.4%. Moreover, the results 

revealed MLP with Levenberg-Marquardt algorithm as the most efficient tool in forecasting 

the half-hour electricity demand since it converges quickly with high accuracy. 

A day-ahead load forecasting for IESCO was also performed in Pakistan using ANN and 

BRT [41]. The study used weather data (humidity, dew points and temperature), time factors 

(hour of the day, weekdays/weekends and public holidays) and past load data (previous day 

and hour load data and 24-hour average load data). The study have proved the effectiveness 

of ANN and BRT models with the MAPE of 3.72% for ANN and 3.33% of BRT 

                                                           
9 ABB Nostradamus is based on neural networks and is a short-term demand forecasting 

system. Although the study does not focus on renewable energy technologies forecasting, it is 

worth mentioning that Nostradamus system can also assist in this regard. 
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respectively. Moreover, BRT performed better than ANN since it required less amount of 

data for training. 

For these studies, MAPE has been used to test the performance of the models  and is given by 

equation 1 [9], [41]–[44]. The MAPE below 5% reflects a highly precise forecasting model 

[11], [43]. 

     𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
| × 100𝑁

𝑖=1                                     (1)  

Another parameter that is used to test the performance or accuracy of the forecasting model is 

the mean absolute error (MAE) which is given by equation 2 [9], [44], 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐴𝑡 − 𝐹𝑡|𝑁

𝑖=1      (2) 

where At is the actual load, Ft is the forecasted load and N is the number of observations or 

data points and t represents a sample at a particular time.  

An hour ahead STLF using Linear Regression (LR) and ANN was conducted for an Indian 

system incorporating historical load, weather and time factor [43]. The neural network was 

trained using the Levenberg-Marquardt Back Propagation (LMBP). The results showed that 

ANN performed better than LR when weather parameters are incorporated into the models 

due to its nonlinearity with a MAPE of about 0.026% and 0.028% for residential and 

industrial feeders respectively. This suggests that ANN gives better results with less MAPE 

and hence better accuracy in predicting the future load. 

A study on STLF using ANN was performed for NEPOOL region of ISO New England using 

historical load and day of the week, hourly temperature and humidity [44]. The training of the 

network was done for weekdays and weekends respectively. The accuracy of the ANN was 

calculated using MAPE, MAE and daily peak forecasted error. The MAPE of 1.38% for 

weekdays and 1.39% for weekends were found portraying good prediction with high 

accuracy. 

A week ahead STLF was constructed for ISO New England using ANN incorporating 

historical demand data, type of the day, temperature and due point [9]. During the analysis of 

the forecasting accuracy, all four seasons of the year were considered. Likewise, MAPE was 

used to test the accuracy of the ANN of the forecasting model. The results show that indeed 

the accuracy of the forecasting model is affected by the seasonal variation of the input data. 

The study revealed the confidence interval of 90% for training, testing and validation of the 
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network. The study concluded by mentioning other weather variables like humidity, wind 

speed, cloud cover, rainfall and human body index to be included in future research so as to 

further improve the accuracy of the forecasted model. 

2.6 Artificial Neural Network (ANN) for STLF 

ANN is a nonlinear mathematical tool consisting of interconnected neurons stimulated by the 

human brain [6], [41]. These neurons form the basic processing units for the neural network 

and are arranged in layers as depicted in Figure 5 [6], [44]. Multiple neurons typically operate 

in parallel to process the numerical data the same way the human brain would do. The 

weights are associated with the connection between neurons and the information is passed in 

a feed-forward manner. The ANN basic architecture shown in Figure 4 comprises: scalar 

weights for connecting the nodes, summation function within the node to combine inputs and 

a transfer function which produces the scalar outputs.  

 

Figure 4 ANN Basic Architecture [41] 

 

Figure 5 The basic three layer neural network [45] 

The mathematical representation of a general neural network is shown in equation 3 [41]. 



16 
 

𝑌𝑘 = ∑ 𝑃𝑘𝑊𝑘
𝑚
𝑘=1                    (3) 

where k = 1, 2, 3 . . .,m, and Pk is the kth input, Wk is the weight allocated to the kth input and 

Yk is the kth output of the ANN. Upon receiving numerical information, the neuron multiplies 

the value with Wk and passes them through the summing function. Several layers between the 

input and output are called hidden layers that act as the black box since the internal 

processing and means of updating the weights is not shown. In simpler words, the neurons 

behave like the biological neurons with respect to the way the biological neurons function 

and their process of learning. With the bias being introduced as shown in Figure 6, the output 

of the neuron is shown by equation 4 [42]. 

𝑦𝑘 = 𝑓(𝑣𝑘)       (4) 

Where vk is given by equation 5 [42]. 

𝑣𝑘 = ∑ 𝑥𝑗𝑤𝑘𝑗 + 𝑏𝑘
𝑚
𝑗=1       (5) 

 

Figure 6 A basic neuron structure [42] 

In a neural networks model, the input layer consists of independent variables; the hidden 

layer consists of unobservable nodes and the output layer consists of dependent variables. If 

the expected results are unknown, the hidden layer attempts to correct input to output 

mapping with the help of an activation function which uses the log-sigmoid transfer function 

shown in equation 6 [41], [43]. The activation function transfers the values coming from the 

input edges. The log-sigmoid allows for easier calculations of the weights since it uses first 

order derivatives that have non-negative values. 
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𝐹(𝑘) =
1

1+ 𝑒−𝑘
                     (6) 

Usually, the relationship between the output and the input is not known before but is 

determined through the training process [6]. The training process is an iterative adjustment 

process applied to the synaptic weights and thresholds. Thus, the power of a neural network 

lies in its ability to learn from its environment. Learning enables the neural network to 

acquire knowledge about the environment and then stores this knowledge as network weights 

[46]. In each iteration, the neural network becomes more informed about its environment thus 

improving its performance. 

Depending on the path followed by the information in the neural network, it can be classified 

as either a feed-forward network or feed-back network. A feed-forward network allows the 

information to flow in one way from input to output. The input layer is usually built from the 

source nodes into which the input data are fed. Nostradamus for instance uses a three layer 

feed-forward neural network as depicted in Figure 7. 

 

Figure 7 Nostradamus Three-layer feed-forward Neural network [47] 

With feed-back, the network has the capability to provide at least one path back to the input 

where the network first started [6]. 

2.7 Load Forecasting and the Electricity Market 

Many utilities around the world make various short-term resource commitments involving 

load forecasting that spans a few minutes up to a week ahead of time. The decisions around 

short-term resource commitment includes amongst many: commitment of generating units, 

economic dispatch of committed units, spinning reserve scheduling, estimation of available 
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transfer capability, stability margins, short-term energy purchases and sales and real-time 

prices [48], [49]. These decisions are taken as the utility performs trading in the competitive 

electricity markets.  

The short-term energy purchases and sales as well as the real-time prices play a crucial role 

for short-term electricity trading. This type of trading enables the electricity producers to sell 

excess or surplus electrical energy since electricity is a non-storable commodity. In addition, 

short-term electricity trading is used by electricity buyers to meet the unplanned demand 

requirements. This helps to improve the reliability of the power system by taking care of 

intermediate load requirements. 

Market participants perform electricity trading through bilateral contracts and the power pool 

[50]–[52]. The short-term electricity trading is performed in the power pool. In the power 

pool, market participants (producers and consumers) submit supply and demand bids or 

offers to a central market place for buying or selling energy [51], [52]. Supply bids 

correspond to the quantity of energy that the producers are willing to sell at a particular price. 

The demand bids correspond to the amount of energy the consumers are willing to buy at a 

particular price. The bid format consists of pair of values such as quantity (MW) and price 

($/MWh).  

The market operator clears the market comprising energy and reserves once a day and 

produces the market clearing price for the electricity. Moreover, the market operator prepares 

the sets of accepted supply and demand bids [52]. The market participants prepare the bids 

such that they can recover variable costs of operating their power plants [53]. This is called 

the marginal price. Moreover, participants submit the bids that are closer to the market 

clearing price [51]. If the seller bid is too high, the seller may end up without selling the 

energy and if the buyer bid is too low, the buyer may not be able to purchase the energy [54].  

In this market, low costs generators would essentially be rewarded during the dispatch of 

power to the consumer. 

Thus, in a power pool, the market operator produces an aggregated supply and demand 

curves for suppliers and consumers resulting from the submitted bids as depicted in Figure 8. 

The supply bids are put in increasing order while the demand bids are put in decreasing order. 

This arrangement of the supply bids determines the order of the dispatch of the power plants 

where the generation costs, physical aspects of the transmission system and the network 

constraints become the determining factors [53], [55].The market clearing price is determined 
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at the point of intersection of the supply and demand curves [53]. The quantity of energy 

corresponding to the market clearing price (MCP) is called market clearing volume (MCV). 

This is the price at which the quantity of energy that the supplier is willing to offer is equal to 

the quantity that the customer is willing to take. 

 

Figure 8 The Market Clearing Process in the Electricity Market [51] 

Apart from the power pool, the energy can be traded through bilateral contracts which 

constitutes major portion or majority of the energy traded. A bilateral contract is an 

agreement between two parties to trade power which is governed by specified conditions 

consisting of MW amount, time of delivery, duration as well as price [56], [57]. In a bilateral 

contract model, the energy transactions take place directly between producer and consumer. 

This contract is negotiated privately without the involvement of the market operator to 

determine the price and quantity to be traded [50].  

Bilateral contracts can be  physical or financial where physical contract means that all the 

traded power  traded must be generated and consumed at a pair of specified network buses 

[56]. Financial contract implies that the power traded can be transferred to the power pool at 

the short-term market-clearing time if power produced has not all been consumed. 

In the competitive wholesale market offered by the power pool, time dimension which covers 

the time when the electricity transaction is produced to the time the actual delivery of 

electricity happens is crucial. The physical delivery of power is referred to as the physical 

power flow. With this in mind, then the wholesale market comprise two categories which are 

the spot market and the forward market [57]. The spot market happens 24 hours ahead of the 

actual delivery and comprises three distinct submarkets: the day-ahead, the hour-ahead and 



20 
 

the real-time markets [57]. If trading happens more than 24 hours then the physical delivery 

becomes part of the forward market as depicted in Figure 9. In the spot market, the market 

operator does not only determine price and quantity to be traded but also performs system 

scheduling and control. 

 

Figure 9 Time Horizon of the Wholesale Electricity Market [57] 

The day-ahead market is regarded as a financial market instead of the physical market. This 

means the seller is not committed to the physical delivery of electricity but is bound to the 

financial obligation provided their bids are accepted [58].  For instance, to fulfil the 

contractual obligations, the producer will not be physically be generating power to the 

consumer. Instead, the system operator will continually be balancing the available generation 

with the demand. Thus, the day-ahead market allows the consumers and producers to hedge 

their transactions in the real-time market which is a physical spot market. This happens if the 

producer cannot provide power in the previous day and must obtain it from the real-time 

market. This suggest that the real-time market guarantees the physical delivery of electricity 

to the consumers. 

Real-time market, regarded as the balancing market or intraday market, is also used to 

address the real-time incidences that impact the supply and demand. This includes 

malfunction of the generator resulting in its unavailability or a substation or transmission line 

outage resulting in unavailability of power to the consumer. Thus, available capacity or 

reserves which are operating reserves, spinning reserves and planning reserves [58] are 

necessary during such incidences to continually supply electricity to the end customer. These 

operational risks results in real-time prices to become more volatile than the day-ahead 

prices. Since the day-ahead prices are more stable than real-time prices, they are used to 

hedge against volatile market prices. Apart from these operational risks, technical constraints 
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resulting from dispatching units can limit maximum or minimum power produced. These 

comprise maximum or minimum output restrictions, ramp rates, startup and shutdown 

procedures and minimum uptime or downtime [52]. 

Apart from the forward market which constitute forward contracts, reserves market also exist. 

The producer in the reserves market acts as a price taker by reacting to a forecasted price 

curve [52] regarded as the residual demand curve or price quota curve as depicted in Figure 

10. This curve is determined based on demand forecasting results and the competitor’s supply 

offers for every hour of the market period. Moreover the residual demand curve reveals how 

the energy market clearing price changes as the quota of the producer changes. Market 

participants are often exposed to different residual demand curves on the same market. There 

are basically two approaches of scheduling the energy and reserve services: first approach 

employs sequential scheduling of energy and reserves starting with clearing the energy 

market and the clearing the reserves market; the second approach involves simultaneous 

scheduling of the energy and reserves market where they are both cleared at almost the same 

time. 

 

Figure 10 The residual demand curve [52] 
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3. Methodology  

The purpose of the study is to show that the adoption of an automated short-term demand 

forecasting for LEC is crucial for effective participation in the SAPP markets to perform 

trading. Moreover, the study will evaluate or identify the benefits that will results from such 

participation. 

3.1 Load-Forecasting Procedure 

The study involves quantitative techniques for data collection. The study uses computer 

modelling and simulation tool called ABB Nostradamus® to produce the results that will be 

used during the discussion. The procedure and the flowchart used by Nostradamus to perform 

demand forecasting are the same as those shown in Figure 11 and Figure 12. 

 

Figure 11 The ANN Load forecasting procedure  [5], [12], [46], [59] 

 Input variable selection: This is where the factors affecting demand forecasting are 

determined. These include historical loads, day type, temperature, humidity just to 

mention a few. This is usually the initial and most important step for the ANN.  

 Data pre-processing: This is where raw data is transformed using mathematical 

operations such as normalizing, ranking and correlation. Irregular or incorrect data 

and observation errors are also identified and are either adjusted or discarded to avoid 

contamination of the model. 
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 Scaling: The input data is scaled between the upper and lower bands of the transfer 

function using two schemes. The first scheme allows the input and output variables to 

be scaled such that they are in the 0 and 1 range as shown in equation 7 [12], [46].  

𝑋𝑖
(𝑘)́

= 𝑋𝑖
(𝑘) 𝑚𝑎𝑥(𝑋𝑖

(𝑘))⁄  

𝑂𝑖
(𝑘)́

= 𝑂𝑖
(𝑘) 𝑚𝑎𝑥(𝑂𝑖

(𝑘))⁄        (7) 

where k is the index of the input and output vectors or patterns, Xi and Oi are input and output 

variables respectively. 

The second scheme is where the input and output variables are scaled such that they are in the 

range -1 and 1 as shown in equation 8 [12]. 

𝑋𝑖
(𝑘)́

= (𝑋𝑖
(𝑘) − 𝑋̃𝑖) 𝑆𝑖⁄   

𝑂𝑖
(𝑘)́

= (𝑂𝑖
(𝑘) − 𝑂̃𝑖 𝑆𝑂𝑖⁄                             (8) 

where Si and SOi are the estimates of the standard deviation of input and output i respectively. 

 Training: Training allows adjusting of the weights until the appropriate 

transformation linking the inputs and outputs is learned. It involves four steps in 

general [46]: (1) data collection for network training, (2) determining the network 

object, (3) training the network, and (4) computing the network outputs. Also, the 

ANN weights and the biases are initialized and the data windows that are used for 

training are moved one day ahead [5]. To ease the training process, the adopted 

practice is to divide the time series into the training, testing and validation sets [59]. 

The training set, being the largest of the three distinct sets, is used by the neural 

network to learn the patterns that exists in the data.  

 Simulation: This allows the predicted results to be produced from the input patterns. 

Simulation is done after the neural network has been trained. 

 Post-processing: This allows for the analysis of the simulated result sets. To perform 

proper analysis of the output results, the outputs need to be de-scaled to achieve the 

desired predicted loads [5], [46]. If required, special events can be factored in at this 

stage. 

 Error Analysis: This allows the accuracy of the ANN to be tested using either MAPE 

or MAE represented by equations (1) and (2).  
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A more simplified ANN flowchart is shown in Figure 12. 

 

Figure 12 Flowchart for Artificial Neural Network Procedure  [11] 

3.2 Inputs to Nostradamus 

The following are the inputs used by Nostradamus software employed in this research: 

 Historical Demand Data: This includes 30-minute demand data from 03rd March 

2017 and 08th March 2018 obtained from LEC Network Manager system as shown in 

Figure 13. This data, which was in Microsoft Excel format, was exported into the 

Nostradamus software. An export and import script have been implemented to 

automate the demand data export from NM into Nostradamus. Automatic data access 

together with accuracy, fast speed, automatic data detection, friendly interface and 

automatic forecasting result generation are the important requirements of a good 

short-term load forecasting system. To improve the accuracy of the model results, the 

data have been cleaned to remove the outliers or bad data. Sudden increase or 

decrease in demand and communication breakdown between central SCADA system 

and monitored equipment can result in having outliers or missing data. 
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Figure 13 Exported 30-minute Data from Network Manager into Nostradamus for training 

the model 

 Day of the week, time of the year and public holidays: Time parameters used in the 

research include day of the week (Monday – Sunday), time of the year (January – 

December) and Lesotho public holidays. The public holidays were created in groups 

where each group name represents the name of the holiday as depicted in Figure 14. 

The date of occurrence of such holiday was added to the group. 

 

Figure 14 Nostradamus Lesotho Holiday Setup 

During training, the hour ahead demand forecasting represented as LEC_INTRADAY in 

Nostradamus, accepted the previous 2-day (-48 hours), 4-day (-96 hours) and 14-day (-336 

hours) demand data as depicted in Figure 15. The day-ahead demand forecasting represented 

as LEC_TOMORROW accepted the previous 4-day (-96 hours), 6-day (-144 hours) and 14-

day (-336 hours) demand data as depicted in Figure 16. The week-ahead demand forecasting 

represented as LEC_FORWARD accepted the previous 14-day (-336 hours) demand data as 

depicted in Figure 17.  
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Based on these inputs, the hour-ahead, day-ahead and week-ahead forecasted results are 

produced. The training and verification results for each forecasting type are shown and 

discussed. The accuracy of Nostradamus was tested using MAPE shown in equation (1). The 

MAPE graph and correlation for each forecasting type are also presented and discussed. 

Moreover, the forecasted seasonal morning and evening peak occurrences are presented and 

discussed and these were linked with the daily load profiles for holiday, normal day, winter 

weekend and normal winter day. These results are crucial to enable LEC to trade in the SAPP 

competitive market in order to balance supply and demand. Next, the comparative analysis of 

Eskom and EDM bilateral peak, standard and off-peak prices against those of SAPP market 

prices was conducted. As the analysis was done, Eskom and EDM energy consumptions and 

energy shares were considered. The purpose was to determine which option will be cost 

effective for LEC in order to address the power deficit. During the comparative analysis, the 

risks and the opportunities under each procurement options are discussed. 

 

Figure 15 Historical Demand Data Lag for Hour-ahead (LEC_INTRADAY) Forecasting 



27 
 

 

Figure 16 Historical Demand Data Lag for Day-ahead (LEC_TOMORROW) Forecasting 

 

Figure 17 Historical Demand Data Lag for Week-ahead (LEC_FORWARD) Forecasting 
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4. Data Analysis and Nostradamus Load Forecasting Results 

4.1 LEC Demand Data Analysis 

Figure 18 illustrates how LEC daily load profile varies for normal day, for holiday, for 

normal winter day and for winter weekend. The peak demand for all profiles occurs in the 

evening and morning hours. This normally happens for residential/domestic customers where 

cooking, showering and heating occur. At midnight, majority of the people are sleeping hence 

the demand is at the minimum. However, industries and offices experience less demand 

during weekends and holiday due to less production activities. This figure will be referenced 

a lot during the discussion of LEC demand peaks obtained from Nostradamus for different 

seasons of the year. 

The morning peak for the normal day which occurs at around 0900 HRS as illustrated by 

Figure 18 lags that of the holiday by about an hour. The normal winter day morning peak 

which happens at around 0830 HRS also lags that of winter weekend by about an hour. 

However, in the evening, the holiday peak which occurs at around 1930 HRS lags the normal 

day peak which happens at around 2000 HRS. Moreover, the normal winter day and the 

winter weekend evening peaks occur at around the same time at about 1830 HRS. But the 

duration of the evening peak for the normal winter day is longer than that of the winter 

weekend. 

 
Figure 18 A 24 hour LEC Load Profile for Normal, Holiday and Winter Periods  

4.2 Training and Verification Results 

The purpose of any forecasting tool is to produce the forecasted results with the least error. In 

order to determine the accuracy of such tools, MAPE is used. Table 1 shows the MAPE 

results obtained during the training and verification phases for the hour-ahead, day-ahead and 
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week-ahead forecasting. 21409 samples were used during training and resulted in the MAPE 

of 3.06 % for hour-ahead forecasting, 4.06 % for day-ahead forecasting and 5.09 % for week-

ahead forecasting respectively. The MAPEs’ obtained are all within the 5 % accuracy limit 

[11], [43] thus showing highly accurate forecasted results. 

The verification of the Nostradamus software was done with 4415 samples as seen in Table 1 

This resulted in the MAPE of 2.94 % for hour-ahead forecasting, 3.63 % for day-ahead 

forecasting and 4.54 % for week-ahead forecasting. The MAPEs’ for the verification are 

below those for the training since less samples were used. This means with less data samples, 

there are less chances of getting bad data that results from outliers or missing data which then 

improves the prediction accuracy.  

Predicting electricity demand with high accuracy such as the one attained in this study 

increases the confidence level of a utility to rely on the predicted results. This facilitates 

electricity trading, load flow analysis, automatic generation control (AGC) scheduling and 

maintenance scheduling. The MAPE results shown in Table 1 reveal the fact that LEC can 

rely on the Nostradamus forecasted results to engage in trading in the SAPP competitive 

market. The bids that are produced in order to trade in the competitive market such as the 

SAPP market are dependent on the demand forecasting results. What Table 1 depicts is that 

Nostradamus software produced the hour-ahead, day-ahead and week-ahead forecasting with 

3%, 4% and 5% confidence levels respectively. 

Table 1 also shows the maximum and minimum forecasted and actual power in MW during 

the training and verification periods for the hour-ahead, day-ahead and week-ahead 

forecasting. What was noticed was that the day-ahead forecasting produced the forecasted 

maximum power of 112 MW which was closest to the maximum actual power of 104 MW. 

This was followed by week-ahead forecasting and finally the day-ahead forecasting with 115 

MW and 123 MW respectively.  

Table 1 MAPE results for Hour-ahead, Day-ahead and Week-ahead Demand Forecasting
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4.3 Hour-ahead Forecasting Results 

Figure 19 shows the hour-ahead electricity demand forecasting results from the 12th to 18th 

July 2019 with the MAPE of 3.06 %. It can be realized that Nostradamus was able to track 

the actual demand quite well. Thus, the prediction of these results using Nostradamus was 

done with high accuracy. Moreover, it was able to forecast the morning and evening peak 

demands very well and these were very close to the actual peak demand. It is critical for the 

forecasting tool to predict the peak demand accurately so that the generation dispatchers can 

generate precise generation schedules to supply the peak demand. If the peak demand is not 

predicted accurately, this may lead to load shedding caused by generation that is not 

sufficient to meet the demand. It can also lead to unnecessary costs of generating more 

electricity than required. 

 

Figure 19 Hour-ahead (Intraday) Results of the Forecasted and Actual Demand of the July 

Week (12th – 19th July) with the MAPE of 3.06% 

Figure 20 shows the MAPE graph for the hour ahead forecasting. It can be realized that the 

forecasting error is high when the iterations (number of passes) are small. As the number of 

iterations increases, the forecasting error is reduced to an acceptable value of around 3 % 

(3.22). The reduction of the forecasting error is attributed by adjusting of the weights as the 

error is fed back (back propagation) into the model. This error is along the lines of the 

accuracy error of 3.06 % obtained during the training of the model which is depicted in Table 
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Figure 20 Hour-ahead (LEC_INTRADAY) Forecasting MAPE Graph 

Figure 21 shows the correlation of the data from 2015 to 2018 for the hour-ahead forecasting. 

There is less correlation of 73 % of the electricity demand in the year 2015 due to time 

factors (season, days of the week and holidays). This was attributed by the fact that it was a 

year of great drought. Thus, the behavior of the electricity demand was not dependent on any 

time effects as discussed in section 2.4. The year that had the greatest correlation was 2018 

with 92 % followed by years 2016 and 2017 with 91 % and 87 % respectively.  This simply 

means that in the year 2018 yearly seasons, holidays and weekdays had the greatest influence 

on the electricity demand than in years 2016 and 2017. 

 

Figure 21 Correlation of Data from 2015 – 2018 for Hour-ahead (LEC_INTRADAY) 

Forecasting 
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4.4 Day-ahead Load Forecasting Results 

Figure 22 shows the day-ahead electricity demand forecasting results captured from the 06th 

to 07th June 2019 with the MAPE of 4.06 %. The forecasted and the actual demand results are 

recorded for every 30 minutes. It can be seen that the forecasted demand profile seem to 

follow the actual demand profile proving that the tool is performing very well since the gap 

between the two profiles is relatively small. 

 

Figure 22 Day-ahead (LEC_TOMORROW) Demand Forecasting for June 2019 (06th – 07th 

June) with the MAPE of 4.06 % 

Figure 23 shows the MAPE graph for the day-ahead forecasting. The forecasting error started 

being high with fewer number of passes or iterations. As the number of iterations or passes 

increases, the forecasting error is reduced gradually until an acceptable forecasting error of 

around 4 % (4.23) is reached. Although slightly higher than the accuracy error obtained 

during the training as depicted in Table 1, it is also around 4 % confirming that the 

forecasting accuracy for the day-ahead forecasting is 4 %. 
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Figure 23 Day-ahead (LEC_TOMORROW) Forecasting MAPE Graph 

Figure 24 shows the correlation of the data from 2015 to 2018 for the day-ahead forecasting. 

Just like with the hour-ahead forecasting, there is less correlation of 73 % of the electricity 

demand in the year 2015 due to time factors (season, days of the week, time of the year and 

holidays) and the weather effects (temperature, humidity wind speed, etc.). Moreover, 2016 

had greatest correlation of 91 % followed by 2017 and 2018, each with 87 % correlation.  

This suggests that in the year 2016 time and weather effects had the greatest influence on the 

electricity demand than in years 2017 and 2018. 

 

Figure 24 Correlation of Data from 2015 – 2018 for Day-ahead (LEC_TOMORROW) 

Forecasting 
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4.5 Week-ahead Load Forecasting Results 

Figure 25 shows the week-ahead electricity demand forecasting results from the week of 22nd 

to 30th September 2019 with the MAPE of 5.09 %. It can be realized that the demand was 

predicted with high accuracy and the 22nd demand profile was tracked very well by 

Nostradamus.  

 

Figure 25 Week-ahead (LEC_FORWARD) Demand Forecasting for September 2019 with the 

MAPE of 5.09 % 

Figure 26 shows the MAPE graph for the week-ahead forecasting. The figure simply portrays 

the behavior of the forecasting error starting being higher at the beginning of forecasting 

when there are few passes. This behavior was similar with the hour-ahead and day-ahead 

MAPE graphs. In addition, the error was reduced to a minimum acceptable value with an 

increase in the number of iterations. The final error obtained was 5.23 %. This error seems 

slightly higher than the training error found in Table 1. However this error is around 5 % 

which confirms that the forecasting accuracy for the week-ahead forecasting is 5 %. 
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Figure 26 Week-ahead (LEC_FORWARD) Forecasting MAPE Graph 

Figure 27 shows the correlation of the demand data from 2015 to 2016 for the week-ahead 

forecasting. It can be seen that there was a correlation of 73 % of the electricity demand in 

the year 2015 due to time factors and weather effects. Also, in year 2016, there was a 

correlation of 91 %. This implies that the time and weather effects had more influence on the 

electricity demand represented by the load curve in 2016 in comparison with the year 2015. 

 

Figure 27 Correlation of Data from 2015 – 2016 for Week-ahead (LEC_FORWARD) 

Forecasting 

4.6 Forecasted Seasonal Peaks 

Figure 28 and Figure 29 show morning and the evening peak demands during the winter 

period. The morning and evening peak demands in MW occur at around 0900 AM and 0630 

PM respectively. This seems to agree with the winter daily LEC load profile shown in Figure 

18. Although these peak times occur for a short period of time, LEC experiences higher price 
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charges for the consumed energy. The prices are based on the peak demand charge. This 

behaviour applies for the hour-ahead, day-ahead and week-ahead demand forecasting. For 

other periods, LEC gets charged at the standard and off-peak prices which are lower than the 

peak prices. Thus, the higher the demand, the higher the price per the energy consumed. This 

is attributed by the dispatch of the peak generators (high cost generators) to meet the peak 

demand. Moreover, the lower the demand, the lower the charge per the energy consumed. 

This is attributed by the use of least-cost generators to meet such demand.  

Figures 30 through 32 portray the morning peak demands and evening peak demand in MW 

occurring during the spring period. There are two morning peaks, one happens at around 

0830 AM while the other occurs at around 0530 AM. The evening peak occurs at around 

0700 PM. The occurrence of these peaks seems to also agree with the normal day load profile 

shown in Figure 18. The shift of the morning peak from 0830 AM to 0530 AM seem to 

happening from the 23rd September as shown in Figure 31.  

Figure 33 and Figure 34 shows the morning and the evening peak demands for the summer 

period. The morning peak happens around 0830 AM while the evening peak happens at 0800 

PM. Again, referring to Figure 18, it also reveals the same behavior for the summer period. 

 

Figure 28 LEC Total Demand Morning Peak Time in Winter 

 

Figure 29 LEC Total Demand Evening Peak Time in Winter 
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Figure 30 LEC Total Demand Morning Peak Time in Spring 

 

Figure 31 LEC Total Demand Morning Peak Time in Spring 

 

Figure 32 LEC Total Demand Evening Peak Time in Spring 

 

Figure 33 LEC Total Demand Morning Peak Time in Summer 
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Figure 34 LEC Total Demand Evening Peak in Summer 

5. Results Analysis and Discussions  

From the discussion of the hour-ahead, day-ahead, and week-ahead forecasting results, it has 

been seen that the Nostradamus software has produced the forecasted results with high 

accuracy. As a reminder, Nostradamus has produced the hour-ahead forecasting with around 

3 % accuracy, day-ahead forecasting with around 4 % accuracy and week-ahead forecasting 

with around 5 % accuracy. These forecasting results are crucial for LEC to participate in the 

SAPP competitive market. The bids that are produced in order to trade in the SAPP market 

are dependent on the demand forecasting results. Thus, with the demand forecasting results 

produced by Nostradamus, LEC is ready to participate in the SAPP competitive market. 

The focus for the remainder of this section will be on the electricity procurement options that 

LEC can utilize to meet the forecasted demand. These options include the bilateral 

agreements with Eskom and EDM and the electricity market provided by SAPP. Under each 

option, the pros and cons as well as the associated risks will be discussed. Moreover, the 

comparative analysis of these options will be considered with the purpose of finding the 

option that results in cheaper electricity for LEC.  

5.1 Power Procurement through Bilateral Agreements 

Lesotho has an installed capacity of 72 MW generated from LHDA’s hydro power plant at 

Muela, of which LEC has signed a bilateral agreement in order to obtain this power to supply 

electricity to the country. However, as depicted in Figure 35 which shows Lesotho maximum 

demand against LHDA installed capacity captured during 2019/20 period [60], LEC is not 

able to fulfil the country’s demand with LHDA generation. Figure 35 further reveals that the 

demand can even be more than double the installed capacity increasing the power deficit even 

more. This happens in winter. Although, the assumption made is that Muela delivers 

maximum power throughout the 2019/20 period, this is not the case. For instance, during the 
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month of December 2019 as depicted in Figure 36, Muela seems to be delivering power that 

is slightly above 60 MW except on the 1st to the 3rd where the plant was not delivering power 

due to plant maintenance hence the total dependency on electricity imports. 

Due to inadequate electricity supply from local generation, LEC has to import electricity 

from Eskom and EDM. These electricity imports occur through fixed bilateral agreements 

which aid in addressing security of supply since they are always guaranteed first priority on 

the transmission network. Moreover, they provide LEC with the assurance of guaranteed 

electricity supply regardless of any load shedding that Eskom and EDM may experience. 

However, these contracts are all physical bilateral contracts meaning LEC must consume all 

dispatched power at the transmission network buses. If not, LEC gets penalized by the utility 

that will consume the dumped energy on its behalf. 

 

Figure 35 LEC Total Demand (Maximum Demand) against Lesotho Installed Capacity for 

the Period of April 2019 to March 2020 [60] 

 

Figure 36 The Actual Total System Demand against the Actual Total Generated Power for 

December 2019 [60] 
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Figure 37 shows the amount of energy that has been traded through bilateral agreements with 

LHDA, Eskom and EDM for the period of 2018/19. Table 2 has presented the energy shares 

of these bilateral agreements as percentages. What is noticed from Table 2 is that throughout 

the 2018/19 period, LEC’s largest portion of energy consumption comes from LHDA with 

the highest share occurring in April 2018 at 69 % and the lowest share occurring in January 

2019 at 49 %. Figure 37 confirms Table 2 results where it is realized that around 50 % or 

more of the total energy traded comes from the local generation (LHDA).  

What is also noticed from Table 2 is that during the high demand season where LEC attains 

the peak demand, LEC consumes more energy from EDM than Eskom with average energy 

shares being around 18 % (EDM) and 15 % (Eskom) respectively. However, during the low 

demand season occurring in summer, LEC consumes more energy from Eskom than EDM, 

with the average energy shares sitting at around 28 % (Eskom) and 6 % (EDM) respectively. 

Figure 37 again confirms these discussions where it is realized that more energy is traded 

from Eskom than EDM during the high demand season while the opposite happens during the 

low demand season.  

 

Figure 37 LEC Traded Energy Quantum from Bilateral Agreements with Eskom, LHDA and 

EDM for 2018/19 Period [61] 
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Table 2 Percentage Share of Bilateral Agreements to the Total Energy Consumption

 

Figure 38 shows electricity imports costs from fixed bilateral agreements for the 2018/19 

period. What is noticed is that LEC incurs more costs during high demand season10 of which 

around 50 % of it comes from Eskom at Maseru Bulk while the other 50 % is shared by EDM 

and Eskom (Clarens and Qacha’s Nek). For instance, during the months of July and August 

2018, LEC incurred around M23 million for each month from Eskom at Maseru Bulk intake 

point. Moreover, Eskom at Clarens tie line charged LEC around M9 million while Eskom at 

Qacha’s Nek tie line charged LEC slightly above M1 million for each of these months. EDM 

charged LEC around M14 million and M16 million for July and August respectively. What is 

also noticed from Figure 38 is that in August 2018, LEC is incurring the highest charge from 

EDM than in the other months. Furthermore, in June 2018, LEC is incurring the highest 

charge (which is slightly above M10 million) from Clarens than in the other months. 

 

Figure 38 Bilateral Charges from Maseru Bulk, EDM, Clarens and Qacha’s Nek for the 

period 2018/19 Period 

                                                           
10 High Demand Season for LEC is from June to August 
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Similarly, just like in the high demand season, Eskom (Maseru Bulk) contributes to total of 

low demand season11 electricity import costs around 50 % or more. Taking for instance the 

month of January 2019, the contribution of around M16 million of electricity costs from 

Eskom (Maseru Bulk) is more than twice the contribution of around M7,7 million from 

EDM, Clarens and Qacha's Nek. Of the M7,7 million, EDM charged LEC around M3 million 

whereas Clarens and Qacha’s Nek charged LEC around M4 million and M700 thousand 

respectively. However, the low demand costs are lower than the high demand costs.  

The total amount of electricity imports from bilateral agreements is depicted in Figure 39. 

What is noticed is that the highest amount of about M49 million was paid in August 2018 

while the lowest amount of about M19 million was paid in May 2018. During the summer 

months comprising November 2018 to January 2019, LEC has paid an amount averaging 

M24 million. What can also be noticed from Figure 39 is that, that during the high demand 

season12 LEC pays around twice as much money than in the low demand season13.   

 

Figure 39 Total Charge from Bilateral Agreements from Maseru Bulk, Clarens, EDM and 

Qacha’s Nek for 2018/19 period 

5.2 Analysis of Possibilities Offered by the Power Pool 

The focus at this point will be on the day-ahead, intra-day and flexible forward electricity 

markets offered by SAPP. For each market type, the discussion around whether LEC could be 

saving by engaging in such markets will be done.  

                                                           
11 Low Demand Season for LEC is from September to May 
12 High demand season for LEC is from June to August 
13 Low demand season for LEC is from September to May 
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Figure 40 and Figure 41 show the import unit costs from bilateral agreements with Eskom 

and EDM during peak, standard and off-peak hours for 2018/19 period. The peak, standard 

and off-peak hours differ for high demand and low demand seasons. During weekdays, 0600 

HRS to 0900 HRS and 1700 HRS to 1900 HRS are peak hours for high demand season 

whereas 0900 HRS to 1700 HRS and 1900 HRS to 2200 HRS are standard hours. 2200 HRS 

to 0600 HRS are off-peak hours for high demand season. On Saturday, 0700 HRS to 1200 

HRS and 1800 HRS to 2000 HRS are standard hours while all other hours are off-peak hours. 

There are no peak hours on weekends. Sunday is an off-peak day. 0700 HRS to 1000 HRS 

and 1800 HRS to 2000 HRS are peak hours for low demand season while 0600 to 0700 HRS, 

1000 HRS to 1800 HRS and 2000 HRS to 2200 HRS are standard hours. Lastly, 2200 HRS to 

0700 HRS are off-peak hours. On Saturday, standard hours are from 0700 HRS to 1200 HRS 

and 1800 HRS to 2000 HRS while off-peak hours are from 2000 HRS to 0700 HRS. Sunday 

hours are all off-peak hours.  

What is demonstrated by Figures 40 and 41 is that during the high demand season, Eskom 

peak prices (~20 USc/kWh) are about twice EDM peak prices (~10 USc/kWh). However, 

during the low demand season, Eskom peak prices fall significantly (~6.5 USc/kWh) to the 

point where they are below EDM peak prices. Moreover, Eskom standard and off-peak prices 

are lower than those of EDM during both the low and the high demand seasons. It is also 

noticed that EDM peak, standard and off-peak prices are flatter throughout the 2018/19 

period while Eskom peak price is spiking in the high demand season and becomes flatter in 

the low demand season. 

 

Figure 40 Eskom Average Peak, Standard and Off-peak Prices at Maseru Bulk Intake Point 
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Figure 41 EDM Average Peak Standard and Off-peak Prices at Maseru Bulk Intake Point 

Figures 42 through 44 show the unit costs for SAPP DAM, FPM-W and IDM during peak, 

standard and off-peak hours for 2018/19 period. Table 3 represents the average unit costs for 

bilateral contracts and SAPP markets obtained from Figures 42 through 44 for high demand 

and low demand seasons respectively. What is noticed from Error! Reference source not 

found. is that Eskom average peak price for high demand season (~20 USc/kWh) is way 

higher than those of SAPP DAM and IDM (~12 USc/kWh each) and FPM-W (~13 

USc/kWh). However, EDM average peak price for high demand season (~10 USc/kWh) is 

lower than SAPP DAM, IDM and FPM-W average peak prices. Moreover, EDM and SAPP 

FPM-W average peak prices for the low demand season are about the same (~10 USc/kWh). 

However, those of SAPP DAM (~9USc/kWh) and IDM (~8 USc/kWh) are lower than 

EDM’s average peak price. Similarly, EDM’s standard price (~7 USc/kWh) and off-peak 

price (~4 USc/kWh) for the low demand season are higher than those of DAM, IDM and 

FPM-W. However, during the low demand season, Eskom’s average peak (~7 USc/kWh) and 

standard (~5 USc/kWh) prices unlike those of EDM are lower than SAPP’s DAM, IDM and 

FPM-W average peak and standard prices. Eskom’s average off-peak price (~3 USc/kWh) is 

about the same as SAPPs’ DAM, IDM and FPM-W average off-peak prices. Furthermore, 

what is noticeable from figures 42 through 44 is the price variability offered by the power 

pool. On the other hand, lack of flexibility of bilateral charges is noticeable as shown in 

figures 40 and 41.  
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Figure 42 Average SAPP DAM Time of Use Prices for the 2018/19 Period [62] 

 

Figure 43 Average SAPP FPM-W Time of Use Prices for 2018/19 Period 

 

Figure 44 Average SAPP IDM Time of Use Prices for 2018/19 Period 
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Table 3 Average Peak, Standard and Off-peak Prices for Bilateral contracts and SAPP Market 

  High 

demand 

season 

average 

peak 

charge 

(USc/kWh) 

High 

demand 

season 

average 

standard 

charge 

(USc/kWh) 

High 

demand 

season 

Average 

Off-peak 

charge 

(USc/kWh) 

Low 

demand 

season 

average 

peak charge 

(USc/kWh) 

Low demand 

season 

average 

standard 

charge 

(USc/kWh) 

Low demand 

season 

average off-

peak charge 

(USc/kWh) 

Eskom 20.35 6.16 3.35 6.74 4.61 2.92 

EDM 10.16 7.11 4.07 9.98 6.98 3.99 

SAPP DAM 11.79 7.72 2.71 8.50 5.83 2.61 

SAPP IDM 11.63 6.98 2.81 8.07 5.70 2.68 

SAPP FPM-W 12.99 6.67 2.61 10.30 6.27 2.65 

When looking at the energy consumptions during peak, standard and off-peak periods from 

the bilateral contracts with Eskom and EDM depicted in Table 4, it can be established that the 

peak energy consumptions from Eskom and EDM for high demand season are around the 

same at an average of about 4 GWh. The standard energy consumption from Eskom of about 

8 GWh is more than that of EDM of about 6 GWh while the energy consumed during the off-

peak period from Eskom of about 2 GWh is much less than that of EDM at about 8 GWh. 

However, during the low demand season, energy consumed from Eskom during peak period 

is still 4 GWh while that of EDM has been reduced to about 1 GWh. During the standard and 

off-peak periods, energy consumption from Eskom has increased to 10 GWh for standard and 

7 GWh for off-peak. However, EDM energy consumption has decreased to about 1 GWh for 

standard and 2 GWh for off-peak. 

Table 4 LEC Peak, Standard and Off-peak Volumes from Eskom and EDM for 2018/19 Period

 

When focusing on the LEC load duration curve (LDC) which is depicted in Figure 45, it can 

be established that, at 50 percent of the time during the 2019/20 period, Lesotho’s demand is 

sitting at around 103 MW (103, 116.06 kW) while around 170 MW of demand occurs about 

once since the percentage of occurrence is very low (approaching 0 % occurrence).  Again, at 

100 % of the time, the demand is around 34 MW which is slightly above 30 MW. The 

demand obtained at 50 % occurrence provides the intermediate load requirements which LEC 
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needs to supply, while the demand obtained when occurrence is around 0 % provides the 

peak load requirements. Moreover, 100% occurrence provides the base load or the minimum 

load requirements. Thus the LDC gives an indication of how often or seldom has a certain 

demand occurred throughout the year. 

 

Figure 45 LEC Load Duration Curve for 2019/20 Period 

Based on these deductions, it can be realized that LEC could meet the intermediate load and 

the base load requirements occurring during standard and off-peak periods by utilizing the 

bilateral agreements from LHDA (local generation), Eskom and EDM. This is based on the 

fact that bilateral agreements offer security of supply and guarantee long term electricity 

supply. Also during these periods, it was realized that bilateral imports standard and off-peak 

charges are around the same as SAPP’s standard and off-peak prices. The exception here is 

EDM charges (7 USc/ kWh standard charge and 4 USc/ kWh off-peak charge) though they 

do not differ much from SAPP’s charges (3 USc/ kWh off-peak charge and 6 USc/ kWh 

standard charge). To meet the peak demand requirements, LEC can utilize the SAPP’s 

competitive market. This is based on the fact that Nostradamus software is able to project the 

peak demand with high accuracy. Moreover, it was realized that peak charges from Eskom 

are costing LEC about twice the total charge. Adoption of SAPP’s market can help reduce the 

bulk purchases costs which will then reduce the tariff charges to the final consumer. 

LEC charges its consumers using a flat tariff. However, SAPP market prices are based TOU. 

Similarly, bilateral agreements from Eskom and EDM are based on TOU except that SAPP 

peak prices are higher than Eskom and EDM bilateral peak prices. Time of use pricing results 

in higher prices during the peak period. Hence, this influences electricity users to shift their 

loads to the period where the cost of energy is lower. Thus, if LEC could shift the peak 
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demand to where the SAPP prices are lower, then it could benefit from SAPP market 

resulting in reduction of bulk purchases costs.  

The share of energy traded bilaterally and in the SAPP market from 2012 to 2020 is presented 

in Figure 46. An increasing trend of the percentage share of the energy traded in the SAPP 

competitive is noticed while the percentage share of energy traded bilaterally portrayed a 

decreasing trend. For instance, energy traded in SAPP market increased from 0.2 % in 

2012/13 to 32 % in 2018/19 as depicted in Figure 46. However, energy traded bilaterally 

decreased from 99.8 % in 2012/13 to 68 % in 2018/19. The decreasing trend of energy traded 

bilaterally is confirmed by Figure 47 which shows a decrease from 7,992 GWh in 2015/16 

period to 3,343 GWh in 2019/20 period. An increase in energy traded in SAPP competitive 

market and decrease in energy traded bilaterally are attributed by the fact that utilities have 

started to take advantage of the SAPP competitive market and are thus slowly decreasing or 

moving away from the bilateral contracts. 

 

Figure 46 Percentage of Energy Traded Bilaterally versus the Competitive Market in SAPP 

from 2012 to 2020 [62] 

 

Figure 47 The share of the Total Energy Traded Bilaterally in the SAPP Market from 2015 to 

2020 [62] 
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Likewise, LEC can also take advantage of SAPP market to procure electricity instead of 

increasing bilateral agreements to meet the demand. This can help reduce the cost of bulk 

purchases. In the competitive market, electricity demand forecasting and price forecasting 

play a major role. With the accurate demand forecasting results produced by Nostradamus, 

LEC is ready to engage in the competitive market offered by SAPP to procure and sell 

electricity. 

Although the SAPP competitive market offers price variability, transmission constraints 

continue to be the prohibiting factor towards trading in the market [62]. This is confirmed by 

Figure 48 which shows the amount of energy matched with the amount of energy traded on 

the market. For instance, in 2016/17, 37 % of energy was traded resulting in 1,023 GWh 

traded energy against 2,780 GWh matched energy.  However, 2017/18 and 2018/19 periods 

resulted in 99 % of the energy traded on the market showing a huge improvement from 

2016/17 period. 2019/20 showed a decrease of the energy traded in the market resulting in 87 

% of the traded energy. 

 

Figure 48 The Volume of Energy Matched against Energy Traded through SAPP Competitive 

Market from 2011 to 2020 [62] 

In the context of LEC, the transmission constraints lie with the 132 kV tie line from Maseru 

bulk to Mabote substation. Depending on how far the electricity dispatch point in the power 

pool is from Mabote substation, the electricity that will be traded will not match the 

electricity that will be matched. This may result in LEC not being able to supply enough 

electricity to meet the demand. 
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6. Conclusions and Recommendations 

In this research, Nostradamus short-term demand forecasting software was used to produce 

accurate hour-ahead, day-ahead and week-ahead electricity demand forecasting for Lesotho. 

Nostradamus produced an hour-ahead, day-ahead and week-ahead demand forecasting with 3 

%, 4 % and 5 % accuracy. These MAPE values are within 5 % acceptable accuracy for short-

term load forecasting model portraying high accuracy. To produce the results, historical 

demand data for March 2017 to March 2018, days of the week, months of the year and 

Lesotho public holidays were utilized.  With these results, LEC is ready to perform trading in 

the SAPP short-term market. However, the accuracy can be improved further by 

incorporating weather data such as temperature and humidity into the model. The 

improvement of the accuracy can addressed through further research. In addition to short-

term demand forecasting, further research on short-term price forecasting needs to be 

undertaken since short-term demand and price forecasting are mandatory for trading in the 

SAPP market.  

As far as the electricity procurement is concerned, LEC is using bilateral agreements with 

LHDA, Eskom and EDM to supply electricity to its consumers. During the high demand 

season, electricity imports from Eskom and EDM costs LEC around twice (M49 Million) as 

much money as it incurs during the low demand season (M24 Million). In order to reduce the 

bulk purchases costs, LEC can utilize bilateral agreements with the local generation to 

address intermediate load requirements of 103 MW since they guarantee long term electricity 

supply. To address the demand beyond the intermediate load, LEC can sort to the SAPP 

market given the fact that Nostradamus software predicts the demand, more especially the 

peak demand with high accuracy. Moreover, SAPP electricity costs for peak hours were 

realized to be lower by around half than the bilateral costs. 

Since the bilateral contracts with Eskom and EDM are fixed agreements with take-or-pay 

clauses, LEC is bound to consume that energy as per the contractual agreement, unless they 

are reviewed, even if it had better offers from other markets. One recommendation is for the 

country to invest in a pump storage generation system and then get cheaper electricity from 

SAPP markets during off-peak periods. This water can then get discharged during the peak 

hours to meet the peak load. As such, Lesotho needs to implement policies promoting 

generation projects such as pump storage to optimally and cost-effectively meet the country’s 

current and future electricity needs. Another recommendation would be for LEC to negotiate 
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the financial bilateral agreements with Eskom and EDM that allows for selling of unused 

power in the SAPP competitive market. 

It was realized however that the transmission constraints are limiting trading in the SAPP 

market. This results in traded energy and the matched energy to differ. LEC for instance is 

constrained by the 132 kV tie line at Maseru bulk. The recommendation here is for LEC to 

invest in upgrading this tie line to at least 275 kV under medium term investment of 3 to 5 

years. LEC can also increase 88 kV tie line at Clarens to at least 132 kV and 22 kV at 

Matatiele to at least 66 kV. Thus, the electricity intake points will be increased resulting in 

the power flow not only through Maseru Bulk but also Clarens and Matatiele. This way LEC 

is at liberty to negotiate cheaper power from anywhere with EDM included. This would 

benefit LEC during the peak period where it was realized that EDM peak prices are cheaper 

than Eskom peak prices. Moreover, having more tie lines will increase the possibility of 

purchased energy to lend in the LEC power network. 
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