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ABSTRACT

The main purpose of this work is to perform Lie group analysis of a pseudo-parabolic

partial differential equation modelling solvent uptake in polymeric solids. Three different

sub-models for constitutive laws for the diffusion coefficient and the viscosity will be

considered. Once the symmetries have been determined, they will be used to find group-

invariant solutions for the optimal systems of one-dimensional subalgebras obtained and

where possible, exact solutions will be obtained.
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INTRODUCTION

Products that are commonly referred to as plastics, nylon and deoxyribonucleic acid

(DNA) to the general public are known as polymers to chemists. A polymer is a macro-

molecule which consists of small molecular units that are linked together to form a long

chain. The small molecular unit is called a monomer.

If one immerses a polymer sample, for example, polymethylmetacrylate, in an organic

solvent such as methanol, solvent particles diffuse into the polymer [8]. In this process

an anomalous diffusion behaviour known as Case II which was reported in [1] by Alfrey,

Gurnee and Lloyd occurs. Case II diffusion (which occurs in polymer-penetrant systems)

explains the process in terms of two basic parameters, the diffusion coefficient and the

viscosity of the polymer. It is characterized by linear sorption kinetics and a sharp

diffusion front in which the penetrant subsatacially swells the polymer [24]. Alfrey et

al documented that as the solvent penetrates into the polymer, swelling takes place and

a sharp front is generated between the swollen rubbery shell and inner glassy core at a

constant velocity, which result in the growth of the volume of the absorbed liquid to be

linear in time. After a certain time the normal (Fickian) diffusion, characterized by the

penetrant’s volume being proportional to the square root of time, occurs. The Fickian

diffusion follows the Fick’s laws introduced by Adolf Fick in 1855, which states that

diffusion is the movement of components from a high concentration to a low concentration

across a concentration gradient, and the concentration changes as a function of time to

the change in flux with respect to position.

The most widely known Mathematical model of the uptake of liquids by polymers was

proposed by Thomas and Windle [24] in 1982. Case II diffusion and related diffusion

process have also been studied by different authors [9, 10, 12, 13]. But recently, research

of the model was carried out using pseudo-parabolic differential equation [8].

1



Problem to be investigated

The pseudoparabolic differential equation modelling solvent uptake in polymeric solids

is given by [8]

ut = (D(u)(u+ ν(u)ut)x)x, (1)

where u = u(t, x) is the concentration of the solvent, t represents time, x stands for the

material coordinates, D is the diffusion coefficient, and ν is the viscosity of the polymer.

The solvent has the property that mass is conserved upon penetrating into the polymer,

hence u(t, x) satisfies the continuity equation

ut + div J = 0, (2)

where J = J(t, x) describes the flux of the solvent. The flux obeys a generalized Darcy’s

law of the form

J = −D(u)(Ou+ E(u)Oσ), (3)

where σ is the stress put on the polymer by the solvent particles and E is the stress

coefficient.

Equation (1) will be considered for different constitutive laws for the diffusion coefficient

D(u) and the viscosity ν(u). In [8] a proof of (short and long) existence of solutions to

the Dirichelt problem for constitutive law D(u) = um with m > 0 and ν(u) = 1 was

given.

Model I:

In this case, it is assumed that there is no phase transition of the polymer during the

uptake of the solvent and at least one of the quantities, diffusion coefficient or inverse

viscosity, degenerates. For example, take D(u) = um with m > 0 and ν(u) = 1, then the

special case of equation (1) having the form

ut = (upux + uqutx)x, (4)

where p and q are real numbers is considered. In the investigation by Hulshof and King

[13] using phase plane analysis, it was determined that there exist positive travelling

2



wave solutions with fronts if and only if 0 < m < 2. It is worth noting that the case

p = q = m corresponds to power law in diffusion coefficient with constant viscosity.

Model II:

In this case, the assumption is that there is no phase transition of the polymer during

the uptake of the solvent and neither the diffusion coefficient nor the inverse viscosity

degenerates in u. We will consider D(u) = emu and ν(u) = e−nu where m,n > 0 as

proposed by Thomas and Windle [24]. Thus the model is given by

ut = (emu(u+ e−nuut)x)x. (5)

Asymptotic analysis on the dependence of the front velocity on m and n was discussed

by During and Cohen [9]. Equation (5) was solved using numerical simulations in [24],

the move from case II to Fickian diffusion was noted.

Model III:

The asymptotic analysis by Hulshof and King [13] suggested the diffusion coefficient of

the form D(u) = uα + εuβ and the constant viscosity ν = 1 where α ≥ 2, 0 < β < 2

and ε << 1. The term uα provides for creation of an approximately sharp front and

the perturbed term εuβ generates a similar front of finite length to cause the sharp front

move like a travelling wave. Thus the model is given by

ut = ((uα + εuβ)(u+ ut)x)x. (6)

For large time (i.e. t→∞) equation (6) is approximated to

ut = ((uα + εuβ)ux)x. (7)

The classical Lie symmetry analysis approach will be used to solve models (4) and (5)

while approximate symmetry analysis of models (6) and (7) will be performed.

Method to be used

In the nineteenth century, Norwegian mathematician Sophus Lie introduced a method of

solving differential equations (DEs) known as Lie symmetry (group) analysis which its
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core idea is based on the invariance of a differential equation under a continuous group

of symmetries. A symmetry group of a differential equation is a group of transformation

which maps any solution to another solution of a differential equation [20]. In other

words, a symmetry of a differential equation is an invertible transformation whose action

leaves the DE unchanged. Finding all symmetries is a difficult task as it involves a lot

of cumbersome and tedious calculations. But if we consider symmetries that depend

continuously on one-parameter and that form a group, we can determine them by using

a powerful and versatile systematic procedure known as Lie’s algorithm. The Lie’s algo-

rithm has been implemented using Computer Algebra Systems(CAS) like Mathematica,

Maple, Maxima and Reduce to mention a few [19]. In this work we will use a software

package YaLie [7] written in Mathematica together with needed algebraic manipulations

to determine the Lie point symmetries.

The investigation of the exact solutions plays an important role in the study of PDEs.

Many different methods have been developed to find these exact solutions such as the in-

verse scattering method, Darboux and Bäcklund transformation, Hirota bilinear method,

Lie symmetry analysis, e.t.c. However, the latter has proven to be a powerful and sys-

tematic approach to construct exact solutions of PDEs by using symmetries to find the

invariant solutions. Invariant solutions are then used to reduce the order of PDE and/or

reduce PDE to an ordinary differential equation (ODE) which in general is easier to solve.

Futhermore, based on the Lie symmetry analysis, many other types of exact solutions can

be obtained, such as a travelling wave solutions, soliton solutions, power series solutions,

fundamental solutions [21], and so on. Another application of Lie symmetry analysis is

the classification of group invariant solutions of DEs by means of optimal system, which

provides the minimal list from which all other invariant solutions can be obtained. Thus,

invariant solutions can be derived from an optimal system. Hence the optimal system

can be used to construct a more abundant group of invariant solutions. In the past six

decades there have been considerable developments in the complilation of literature on

symmetry analysis of differential equations as evidenced by research papers and books

[4, 5, 6, 14, 20, 21, 23] including the references there in.

An outline of the study is as follows. In Chapter 1 a brief theoretical background of Lie

symmetry analysis is given. In the remaining chapters, different models of the pseudo-
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parabolic equation are studied. In Chapters 2 and 3, the Lie point symmetries are

obtained for each model and the corresponding optimal system is derived. Thereafter

symmetry reductions and group invariant solutions are obtained. In Chapter 4, the

approximate symmetries are obtained and the approximate symmetry Lie algebra is

used to construct approximate invariant solutions.
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Chapter 1

Lie Point Symmetries of Differential

Equations

In this chapter we introduce some basic methods of Lie symmetry analysis of differential

equations (DEs) that are used throughout this work including the algorithm to determine

the Lie point symmetries of PDEs based upon the references [4, 5, 6, 14, 15, 17, 18, 20,

21, 23]. The definitions, theorems, proofs and notations in this chapter are based upon

the aforementioned references.

In order for one to clearly get the concepts about Lie symmetry analysis, we will consider

a general second-order PDE of the form

E(t, x, u, ut, ux, utt, utx, uxx) = 0 (1.1)

in one dependent variable u and two independent variables t and x.

1.1 One parameter group of transformations

Definition 1.1.1. Invertible transformations of the variables t, x, u

t = f(t, x, u), x = g(t, x, u), u = h(t, x, u)
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are called symmetry transformations of (1.1) if they leave (1.1) form-invariant (has the

same form) in the new variables t, x, u, i.e.,

E(t, x, u, ut, ux, utt, utx, uxx) = 0, (1.2)

whenever (1.1) is satisfied.

Definition 1.1.2. A set G of transformations

Ta : t = f(t, x, u, a), x = g(t, x, u, a), u = h(t, x, u, a) (1.3)

is called a continuous one-parameter (local) Lie group of transformations (1.3) in R3

where f, g, h are differentiable functions and a is a real parameter which continuously

takes values in a neighbourhood D ⊂ R of a = 0 provided the group properties of closure,

identity and inverse are satisfied, i.e.,

(i) Closure: If Ta, Tb ∈ G, where a, b ∈ D′ ⊂ D then

TaTb = Tc ∈ G, c = φ(a, b) ∈ D.

(ii) Identity: There exists T0 ∈ G such that

T0Ta = TaT0 = Ta,

for any a ∈ D′ ⊂ D. T0 is known as the identity of the group.

(iii) Inverse: There exists T−1
a = Ta−1 ∈ G, a−1 ∈ D such that

T−1
a = Ta−1 = T0,

for any T0 ∈ G, a ∈ D′ ⊂ D. T−1
a is known as the inverse of the group.

The group property (i) can be written as

t = f(t, x, u, b) = f(f(t, x, u, a), b) = f(t, x, u, φ(a, b)),

x = g(t, x, u, b) = g(g(t, x, u, a), b) = g(t, x, u, φ(a, b)),

u = h(t, x, u, b) = h(h(t, x, u, a), b) = h(t, x, u, φ(a, b)).

(1.4)

The analytic function φ is called the group composition law.

For the rest of the study, we will use the term “a one-parameter group” to mean a

continuous one-parameter (local) group.
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Corrolary 1.1.1. Any one-parameter group of transformation is abelian, i.e.,

TaTb = TbTa.

Definition 1.1.3. A group parameter a is canonical if the group composition law is

additive, i.e., φ(a, b) = a+ b.

If a is canonical, then

TbTa = Ta+b = Tb+a = TaTb.

Theorem 1.1.1. Given an arbitrary composition law φ(a, b) the canonical parameter ã

is defined by

ã =

∫ a

0

da

A(a)
,

where

A(a) =
∂φ(a, b)

∂b

∣∣∣∣
b=0

.

Definition 1.1.4. The transformations (1.3) form a symmetry group G of E if its in-

variant form (1.2) is satisfied whenever equation (1.1) holds.

1.2 Infinitisemal generator and Lie’s equation

According to the Lie theory the construction of the symmetry group G is equivalent to

the determination of its infinitesimal transformations

t ≈ t+ aξ1(t, x, u), x ≈ x+ aξ2(t, x, u), u ≈ u+ η(t, x, u) (1.5)

obtained by expanding (1.3) in powers of a around a = 0 (in a neighborhood a = 0

identity) and setting

∂f(t, x, u, a)

∂a

∣∣∣∣
a=0

= ξ1(t, x, u),
∂g(t, x, u, a)

∂a

∣∣∣∣
a=0

= ξ2(t, x, u),
∂h(t, x, u, a)

∂a

∣∣∣∣
a=0

= η(t, x, u).

The components ξ1, ξ2 and η are called the infinitesimals of (1.3). The vector (ξ1, ξ2, η)

is the tangent vector at the point (t, x, u) to the surface curve described by transformed

points (t, x, u), and it is therefore called the tangent vector field of the group G.

8



One can now introduce the symbol X (after Lie) of the infinitesimal transformations

(1.5) by writing

t ≈ (1 +X)t, x ≈ (1 +X)x, u ≈ (1 +X)u, (1.6)

where

X = (ξ1(t, x, u), ξ2(t, x, u), η(t, x, u)).∇

= ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
,

(1.7)

and the operator ∇ is the gradient vector operator ∇ =

(
∂

∂t
,
∂

∂x
,
∂

∂u

)
.

The operator (1.7) is known as the infinitesimal operator or generator of the group G.

Remark 1.2.1. X((t, x, u)) = (ξ1(t, x, u), ξ2(t, x, u), η(t, x, u)).

Theorem 1.2.1. Given infinitesimal transformations (1.5), or an infinitesimal operator

(1.7) the transformations (1.3) of the corresponding group G are determined by solving

the Lie equations

dt

da
= ξ1(t, x, u),

dx

da
= ξ2(t, x, u),

du

da
= η(t, x, u), (1.8)

subject to the initial conditions

f(t, x, u, a)|a=0 = t, g(t, x, u, a)|a=0 = x, h(t, x, u, a)|a=0 = u.

A one-parameter Lie group of transformation is equivalent to its infinitesimal operator,

this allows to represent the solution of Lie equations in terms of Taylor series (exponential

map)

t = exp(aX)t, x = exp(aX)x, u = exp(aX)u, (1.9)

where

exp(aX) = 1 + aX +
a2

2!
+ · · · =

∞∑
j=0

aj

j!
Xj

(1.10)

is known as the Lie series operator.
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1.3 Invariants

Definition 1.3.1. A point (t, x, u) ∈ R3 is an invariant point if it remains unchanged

by every transformation of a group G, i.e.,

(t, x, u) = (f(t, x, u, a), g(t, x, u, a), h(t, x, u, a)) = (t, x, u), ∀a ∈ D′ ⊂ D. (1.11)

Theorem 1.3.1. A point (t, x, u) ∈ R3 is an invariant point of a group G with operator

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(1.12)

if and only if

ξ1(t, x, u) = ξ2(t, x, u) = η(t, x, u). (1.13)

Definition 1.3.2. A function F (t, x, u) is called an invariant of a group G if and only if

F (t, x, u) = F (f(t, x, u, a), g(t, x, u, a), h(t, x, u, a)) = F (t, x, u) (1.14)

for t, x, u, a ∈ D′ ⊂ D.

Theorem 1.3.2. A function F (t, x, u) is an invariant of a group G with generator X if

and only if X(F ) = 0, i.e.,

X(F ) = ξ1∂F

∂t
= ξ2∂F

∂x
= η

∂F

∂u
. (1.15)

Condition (1.15) is known as the infinitesimal criterion of invariance. From (1.15), one-

parameter group has 2 functionally independent invariants (basis of invariants) taken

from the left hand sides of 2 first integrals J1(t, x, u) = C1 and J2(t, x, u) = C2 of the

characteristic equations for linear PDE (1.15). Any other invariant is a function of

J1(t, x, u) = C1 and J2(t, x, u) = C2.

1.4 Prolongation formulas

Consider a kth-order PDE

E(t, x, u, u(1), . . . , u(k)) = 0, (1.16)

10



where t and x are two independent variables and u is the dependent variable. Let

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(1.17)

be the infinitesimal generator of the one-parameter group G of transformation (1.3).

Definition 1.4.1. The extended infinitesimal generator X [k] of the prolonged group G[k]

on the space (t, x, u, u(1), . . . , u(k)) is called the kth prolongation of X, and denoted by

X [k] = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
+ ζi(t, x, u, u(1))

∂

∂u(1)

+ · · ·+ ζi1···ik(t, x, u, u(1), · · · , u(k))
∂

∂u(i1···ik)

.

(1.18)

The coefficients ζs are determined recursively by the prolongation formulae

ζi = Di(η)− ujDi(ξ
j)

= Di(η)− utDi(ξ
1)− uxDi(ξ

2),

ζij = Dj(ζi)− uilDj(ξ
l)

= Di(ζi)− uitDj(ξ
1)− uixDj(ξ

2),

...

ζi1···ik = Dik(ζi1···ik−1
)− uii···ik−1lDik(ξl)

= Dik(ζi1···ik−1
)− uii···ik−1tDik(ξ1)− uii···ik−1xDik(ξ2),

(1.19)

where i, j, i1, · · · , ik = t, x and the total derivative operator Di is given by

Di =
∂

∂i
+ uj

∂

∂u
+ uij

∂

∂uj
+ · · · . (1.20)

For example, if we consider a second order partial differential equation (1.1), the second

prolongation of the prolonged group G[2] in a space (t, x, u, ut, ux, utt, utx, uxx) is given by

X [2] = X + ζt∂ut + ζx∂ux + ζtt∂utt + ζtx∂utx + ζxx∂uxx . (1.21)

The coefficients ζt, ζx, ζtx and ζxx, and are given by the formulae

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),

ζx = Dx(η)− utDx(ξ
1)− uxDx(ξ

2),

ζtt = Dt(ζt)− uttDt(ξ
1)− utxDt(ξ

2),

ζtx = ζxt = Dx(ζt)− uttDx(ξ
1)− utxDx(ξ

2),

ζxx = Dx(ζx)− utxDx(ξ
1)− uxxDx(ξ

2),

11



where Dt and Dx are total derivatives with respect to t and x respectively given by

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

(1.22)

Using the definitions of the total derivatives Dt and Dx yields

ζt = ηt + ut(ηu − ξ1
t )− u2

t ξ
1
u − uxξ2

t − uxutξ2
u, (1.23)

ζx = ηx + ux(ηu − ξ2
x)− u2

xξ
2
u − utξ1

x − uxutξ1
u, (1.24)

ζtt = ηtt + 2utηtu + uttηu + u2
tηuu − 2uxtξ

2
t − uxξ2

tt − 2uxutξ
2
tu − ξ2

u(uxutt + 2utuxt)

− uxu2
t ξ

2
uu − 2uttξ

1
t − utξ1

tt − 2u2
t ξ

1
tu − 3ututtξ

1
u − u3

t ξ
1
uu, (1.25)

ζtx = ηtx + utηxu + uxηtu + uxtηu + utuxηuu − uttξ1
x − utxξ1

t − ξ1
u(uxutt + 2ututx)

− ut(ξ1
xt + utξ

1
xu + uxξ

1
tu + utuxξ

1
uu)− utxξ2

x − uxxξ2
t − ξ2

u(utuxx + 2uxuxt)

− ux(ξ2
tx + utξ

2
xu + uxξ

2
tu + utuxξ

2
uu), (1.26)

ζxx = ηxx + 2uxηxu + uxxηu + u2
xηuu − 2uxxξ

2
x − uxξ2

xx − 2u2
xξ

2
xu − ξ1

u(utuxx + 2uxuxt)

− u3
xξ

2
uu − 2uxtξ

1
x − utξ1

xx − 2uxutξ
1
xu − u2

xutξ
1
uu − 3uxuxxξ

2
u. (1.27)

1.5 Determining equations for Lie point symmetries

In this section we introduce Lie’s algorithm for calculating Lie point symmetries of dif-

ferential equations.

Definition 1.5.1. An invertible transformation acting on the space (t, x, u) of E is a

point symmetry of E provided it transform any solution of the equation into another

solution of the same equation.

Theorem 1.5.1. Let G be a group of infinitesimal transformations (1.5) admitted by

E. Then G consists of symmetries of E if and only if

X [2](E) = 0, (1.28)

whenever (1.1) is satisfied for every group generator X of G. Conversely, the operator

X is a point symmetry of (1.1) if

X [2](E) = 0, whenever E = 0. (1.29)
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The symmetry condition (1.29), also called the invariance criterion can be written com-

pactly as

X [2](E)
∣∣
E=0

= 0, (1.30)

where |E=0 means evaluated at the equation E = 0.

Definition 1.5.2. The equation (1.30) is called the determining equation, it is an over-

determined system of linear homogeneous PDEs for the unknowns ξ1, ξ2, η (infinitesi-

mals) of the symmetry generator X.

Theorem 1.5.2. The solution of the determining system form a vector space, that is,

any finite linear combination of the symmetries is again a symmetry.

Theorem (1.5.1) summarizes Lie’s algorithm. Lie’s algorithm for calculating Lie point

symmetries of differential equations is explained in several textbooks, among them [5, 7,

20, 21]. We will adopt Lie’s algorithm as explained in [18].

Lie’s algorithm

1. Write E such that all the terms are on the left hand side.

2. Write the symmetry generator

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
.

3. Prolong the symmetry generator X to the order which is the same as the order of

E, i.e.,

X [k] = X + ζi(t, x, u, u(1))
∂

∂u(1)

+ · · ·+ ζi1···ik(t, x, u, u(1), · · · , u(k))
∂

∂u(i1···ik)

,

(1.31)

where the variables ζi are given by (1.19).

4. Apply the prolonged generator X [k] on E evaluated at E = 0 which gives the

symmetry condition

X [k](E)
∣∣
E=0

= 0. (1.32)

5. Substitute the ζi upon expansion of the symmetry condition and replace the deriva-

tives which are to be eliminated.
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6. Separate the expanded expression with respect to the derivatives of the depen-

dent variables and their powers resulting from an over-determined system of linear

homogeneous PDEs in terms of infinitesimals ξ1, ξ2 and η.

7. Solve the over-determined system for the infinitesimals ξ1, ξ2 and η.

8. Construct the one-parameter group using Theorem (1.2.1).

1.6 Lie algebra

Definition 1.6.1. A Lie algebra is a vector space L over a field F with a binary operation

[−,−] : L×L→ L called Lie bracket (also known as commutator), such that the following

axioms are satisfied

(i) Bilinearity: If X1, X2, X3 ∈ L and a, b ∈ F, then

[aX1 + bX2, X3] = a[X1, X3] + b[X2, X3].

(ii) Skew-Symmetry: If X1 ∈ L, then

[X1, X1] = 0,

and this implies that, for all X1, X2 ∈ L

[X1, X2] = −[X2, X1].

(iii) Jacobi Identity: If X1, X2, X3 ∈ L, then

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0.

Definition 1.6.2. A Lie bracket (commutator) [−,−] on the set of vector fields V is

defined by

[X1, X2] = X1(X2)−X2(X1),

where X1 and X2 are operators defined respectively by

X1 = ξ1
1(t, x, u)

∂

∂t
+ ξ2

1(t, x, u)
∂

∂x
+ η1(t, x, u)

∂

∂u

and

X2 = ξ1
2(t, x, u)

∂

∂t
+ ξ2

2(t, x, u)
∂

∂x
+ η2(t, x, u)

∂

∂u
.
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Theorem 1.6.1. The set of all symmetries forms a Lie algebra called a symmetry Lie

algebra.

Definition 1.6.3. The dimension of a Lie algebra L is the dimension of the finite vector

space L. Finite-dimensional Lie algebra of dimension r is denoted by Lr

Definition 1.6.4. Let Lr be a Lie algebra over field F, then a linear subspace S of L

(S ⊆ L) is a subalgebra of L if it is closed under the Lie bracket of  L, that is [X1, X2] ∈ S
if X1, X2 ∈ S.

Definition 1.6.5. Let I be a linear subspace of a Lie algebra L. Then I is an ideal of

L if [X1, X2] ∈ I whenever X1 ∈ I and X2 ∈ L.

Definition 1.6.6. A Lie algebra L is called abelian if the Lie bracket vanishes for all

elements in L, that is, [X1, X2] = 0 for all X1, X2 ∈ L.

1.7 Invariant solution

Definition 1.7.1. A solution u = F (t, x) of E is invariant under the one-parameter

group of transformation (1.3) if

u = F (t, x). (1.33)

Definition 1.7.2. A function u = F (t, x) is said to be an invariant solution under the

one-parameter group of transformation (1.3) of E if and only if

X(u− F (t, x))
∣∣
u=F (t,x)

= 0. (1.34)

1.8 Conclusion

In this chapter Lie group analysis of PDEs was introduced, where notations, theorems

and definitions that will be used throughout this work were presented. An algorithm that

is used to calculate Lie point symmetries of PDEs due to Sophus Lie was summarized.
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Chapter 2

Symmetries and Invariant Solutions

of a pseudo-parabolic PDE: Model I

In this chapter we consider the pseudo-parabolic PDE (4)

ut = (upux + uqutx)x, (2.1)

where p and q are real numbers. We start by considering a general case where p 6= q

and p, q 6= 0 and perform Lie symmetry analysis, i.e, we find Lie point symmetries, then

derive optimal systems, and subsequently perform symmetry reductions and construct

group invariant solutions. Thereafter we consider particular cases of (2.1) for different

values of p and q which arises from the analysis of the general case.

2.1 Calculation of Lie point symmetries

According to Lie’s algorithm, the vector field

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.2)

is a symmetry generator of (2.1) if and only if

X [3](ut − (upux + uqutx)x)|ut=(upux+uqutx)x = 0, (2.3)
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where X [3] is the third prolongation of X given by

X [3] = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtt

∂

∂utt
+ ζtx

∂

∂utx

+ζxx
∂

∂uxx
+ ζttt

∂

∂uttt
+ ζttx

∂

∂uttx
+ ζtxx

∂

∂utxx
+ ζxxx

∂

∂uxxx
.

From (2.3), we have(
ζt −

(
p(p− 1)up−2u2

x + pup−1uxx + q(q − 1)uq−2uxutx + quq−1utxx
)
η

−(2pup−1ux + quq−1utx)ζx − quq−1uxζtx − upζxx

−uqζtxx
)∣∣
ut=(upux+uqutx)x

= 0,

(2.4)

where the coefficients ζt, ζx, ζtx, ζxx are given respectively by equations (1.23), (1.24),

(1.26), (1.27), and ζtxx is given by

ζtxx = Dt(ζxx)− uxxtDt(ξ
1)− uxxxDt(ξ

2). (2.5)

Expansion of (2.5) gives

ζtxx = utxxηu − 2uttx(uxξ
1
u + ξ1

x)− 2utxx(uxξ
2
u + ξ2

x) + 2utx(uxηuu + ηxu)

− utt(uxxξ1
u + uxξ

1
xu + ux(uxξ

1
uu + ξ1

xu) + ξ1
xx)

− utx(uxxξ2
u + uxξ

2
xu + ux(uxξ

2
uu + ξ2

xu) + ξ2
xx)

+ ut(uxxηuu + uxηxuu + ux(uxηuuu + ηxuu) + ηxxu)− utxx(utξ1
u + ξ1

t )

− uxxx(utξ2
u + ξ2

t ) + uxxηtu − 2utx(utxξ
1
u + ut(uxξ

1
uu + ξ1

xu) + uxξ
1
tu + ξ1

tx)

− 2uxx(utxξ
2
u + ut(uxξ

2
uu + ξ2

xu) + uxξ
2
tu + ξ2

tx) + uxηtxu + ux(uxηtuu + ηtxu)

+ ηtxx − ut(utxxξ1
u + 2utx(uxξ

1
uu + ξ1

xu) + ut(uxxξ
1
uu + uxξ

1
xuu

+ ux(uxξ
1
uuu + ξ1

xuu) + ξ1
xxu) + uxxξ

1
tu + uxξ

1
txu + ux(uxξ

1
tuu + ξ1

txu) + ξ1
txx)

− ux(utxxξ2
u + 2utx(uxξ

2
uu + ξ2

xu) + ut(uxxξ
2
uu + uxξ

2
xuu

+ ux(uxξ
2
uuu + ξ2

xuu) + ξ2
xxu) + uxxξ

2
tu + uxξ

2
txu + ux(uxξ

2
tuu + ξ2

txu) + ξ2
txx).

(2.6)

Substitution of equations (1.23), (1.24), (1.26), (1.27), and (2.6) into (2.4) yields an

overdetermined system of linear partial differential equations (determining equations)

that can be solved for the coefficients ξ1, ξ2 and η since they are independent of the

derivatives of the dependent variable u. Generating the determining equations manually

is easy but it is a lengthy and tiring task. The method of Lie is algorithmic, as a result,

symbolic manipulation software packages such as Mathematica [25], Maple, Maxima and
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Reduce have been developed to perform this task. In this work we will use Mathematica

software package YaLie [7]. Thus, the determining equations are

ξ1
u = 0, (2.7)

ξ2
u = 0, (2.8)

ηuu = 0, (2.9)

ξ1
x = 0, (2.10)

ηxu = 0, (2.11)

ξ2
t = 0, (2.12)

quq−1ηx − uqξ2
xx = 0, (2.13)

upηxx − ηt + uqηtxx = 0, (2.14)

quq−1η − 2uqξ2
x = 0, (2.15)

(1− p)pup−2η − pup−1ηu + 2pup−1ξ2
x − pup−1ξ1

t − quq−1ηtu = 0, (2.16)

pup−1η − 2upξ2
x + upξ1

t + uqηtu = 0, (2.17)

(1− q)quq−2η − quq−1ηu + 2quq−1ξ2
x = 0, (2.18)

2pup−1ηx − upξ2
xx + quq−1ηtx = 0, (2.19)

where the subscripts denote partial derivatives with respect to the indicated variable.

From equations (2.7) and (2.10) we have

ξ1 = a(t), (2.20)

where a(t) is an arbitrary function of t. Equations (2.8) and (2.12) give

ξ2 = b(x), (2.21)

where b(x) is an arbitrary function of x. Substituting equation (2.21) into equation (2.15)

we obtain

η =
2ub′(x)

q
. (2.22)

Equation (2.9) is identically satisfied by (2.22). Substituting equations (2.20), (2.21),

and (2.22) into equations (2.11), (2.13), (2.14), (2.16), (2.17), (2.18) and (2.19) reduce

to the following equations

b′′(x) = 0, (2.23)

a′(t) + 2(p− q)b′(x) = 0. (2.24)
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From equation (2.23), we obtain

b(x) = k1x+ k2, (2.25)

where k1 and k2 are constants of integration. Substituting (2.25) into equation (2.24) we

obtain

a′(t) + 2(p− q)k1 = 0. (2.26)

From equation (2.26) we get

a(t) =
2k1(q − p)t

q
+ k3, (2.27)

where k3 is a constant of integration. Thus,

ξ1 =
2k1(q − p)t

q
+ k3,

ξ2 = k1x+ k2,

η =
2k1u

q
.

(2.28)

Therefore the Lie point symmetries of equation (2.1) are

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 =
2(q − p)t

q

∂

∂t
+ x

∂

∂x
+

2u

q

∂

∂u
≈ 2(q − p)t ∂

∂t
+ qx

∂

∂x
+ 2u

∂

∂u
.

(2.29)

We now consider particular cases of equation (2.1) and obtain corresponding Lie point

symmetries.

Subcase 2.1.1. p = q = γ 6= 0, 1.

When p = q = γ 6= 0, 1 equation (2.1) becomes

ut = (uγux + uγutx)x (2.30)

and the Lie point symmetries of (2.30) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = γx
∂

∂x
+ 2u

∂

∂u
.

(2.31)
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Subcase 2.1.2. p 6= 0, 1 and q = 0.

When p 6= 0, 1 and q = 0 equation (2.1) becomes

ut = (upux + utx)x (2.32)

and the Lie point symmetries of (2.32) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = −pt ∂
∂t

+ u
∂

∂u
.

(2.33)

Subcase 2.1.3. p = q = 0.

When p = q = 0 equation (2.1) becomes

ut = uxx + utxx (2.34)

and the Lie point symmetries of (2.34) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = u
∂

∂u
,

Xc = c(t, x)
∂

∂u
.

(2.35)

The function c(t, x) is a solution to equation (2.34).

Subcase 2.1.4. p = 0 and q = 1.

When p = 0 and q = 1 equation (2.1) becomes

ut = (ux + uutx)x (2.36)

and the Lie point symmetries of (2.36) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 2t
∂

∂t
+ x

∂

∂x
+ 2u

∂

∂u
.

(2.37)
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Subcase 2.1.5. p = 1 and q = 0.

When p = 1 and q = 0 equation (2.1) becomes

ut = (uux + utx)x (2.38)

and the Lie point symmetries of (2.38) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = −t ∂
∂t

+ u
∂

∂u
.

(2.39)

Subcase 2.1.6. p 6= 0, 1 and q = 1.

When p 6= 0, 1 and q = 1 equation (2.1) becomes

ut = (upux + uutx)x (2.40)

and the Lie point symmetries of (2.40) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 2(1− p)t ∂
∂t

+ x
∂

∂x
+ 2u

∂

∂u
.

(2.41)

Subcase 2.1.7. p = q = 1.

When p = q = 1 equation (2.1) becomes

ut = (uux + uutx)x (2.42)

and the Lie point symmetries of (2.42) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = x
∂

∂x
+ 2u

∂

∂u
.

(2.43)
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Subcase 2.1.8. p = 0 and q 6= 0, 1.

When p = 0 and q 6= 0, 1 equation (2.1) becomes

ut = (ux + uqutx)x (2.44)

and the Lie point symmetries of (2.44) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 2qt
∂

∂t
+ qx

∂

∂x
+ 2u

∂

∂u
.

(2.45)

Subcase 2.1.9. p = 1 and q 6= 0, 1.

When p = 1 and q 6= 0, 1 equation (2.1) becomes

ut = (uux + uqutx)x (2.46)

and the Lie point symmetries of (2.46) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 2(q − 1)t
∂

∂t
+ qx

∂

∂x
+ 2u

∂

∂u
.

(2.47)

Remark 2.1.1. Subcases 2.1.4, 2.1.6, 2.1.8 and 2.1.9 are recovered from the general

case. Subcase 2.1.7 is recovered from subcase 2.1.1 whereas subcase 2.1.5 is obtained

from subcase 2.1.2. Therefore, this amounts to considering the general case and subcases

2.1.1, 2.1.2, 2.1.3 because they have different symmetry group.

2.2 Optimal system of subalgebras

In this section, we construct one-dimensional optimal system for the Lie algebra with

basis (2.29) as an illustration, the rest are presented without detailed calculations.

Given a Lie algebra admitted by a differential equation, any linear combination of those

Lie point symmetries can be used to perform symmetry reduction, and hence construct
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an invariant solution of the equation. Since there may be an infinite number of such

linear combinations, it may not be possible to list all of them. Rather than guessing

or choosing a good combination, there is an effective and systematic way of classifying

those combinations known as obtaining an optimal system, which is a collection of all

non-unique linear combinations that represents all possible linear combinations.

More formally, an optimal system of subalgebras is a list of conjugacy inequivalent sub-

algebras in the Lie algebra, L, where any other subalgebra in L is conjugate to only one

of the subalgebras in that list using adjoint representation [20]. Patera and Winternitz

[22] defined optimal system of subalgebras as a collection of pairwise non-conjugate sub-

algebras where two subalgebras in the Lie algebra are conjugate (similar) if there is a

transformation from group G which takes one subalgebra into the other.

There are three methods mostly used to construct an optimal system of subalgebras:

Olver [20] suggested a method where the most general expression of the Lie algebra is

simplified as much as possible by subjecting it to various adjoint trasformations. Patera

and Winternitz [22] in their method, they first start by finding the subalgebras of Lie

algebra of dimension r ≤ 4, then classify the subalgebras of each such Lie algebra into

conjugacy classes and finally present a representative of each class. Conjugacy in each

case is considered under the group of inner automorphism, i.e., the Lie group obtained

by the exponentiation of the adjoint representation of the considered Lie algebra. In

case the Lie algebra is of dimension r > 4, it is decomposed into decomposable parts

then find the subalgebras for each and then combining them again. Method suggested

by Ovsiannikov [21] construct an optimal system by using a global matrix for the adjoint

transformation. In this work the former is used.

The adjoint transformation is expressed as the following series which is given by Baker-

Campbell-Hausdorf formula [22]:

Ad(eµXi)Xj =
∞∑
k=0

µk

k!
(AdXi)

kXj

= Xj − µ[Xi, Xj] +
µ2

2!
[Xi, [Xi, Xj]]−

µ3

3!
[Xi, [Xi, [Xi, Xj]]] + · · ·

(2.48)

where µ is a parameter, and [Xi, Xj] is the Lie bracket of Xi and Xj given by

[Xi, Xj] = Xi(Xj)−Xj(Xi).

23



Before we can construct an optimal system, we will illustrate with examples how a Lie

bracket [Xi, Xj] of two symmetries Xi and Xj is obtained and how the adjoint represen-

tation Ad(eµXi)Xj of Xi and Xj is constructed.

Example 2.2.1. Consider two symmetries of (2.1), say X1 and X3, then a non-zero

commutator [X1, X3] is given by

[X1, X3] = X1(X3)−X3(X1)

=
∂

∂t

(
2(q − p)t ∂

∂t
+ qx

∂

∂x
+ 2u

∂

∂u

)
−
(

2(q − p)t ∂
∂t

+ qx
∂

∂x
+ 2u

∂

∂u

)
∂

∂t

= 2(q − p) ∂
∂t

= 2(q − p)X1.

The full calculations of the commutators [Xi, Xj] where i, j = 1, 2, 3 are summarised

in Table 2.1. To compute the adjoint representation, say Ad(eµXi)Xj of Xi and Xj we

↗ [Xi, Xj] X1 X2 X3

X1 0 0 2(q − p)X1

X2 0 0 qX2

X3 −2(q − p)X1 −qX2 0

Table 2.1: Table of commutators of (2.1)

will make use of Table 2.1 and equation (2.48). As an illustration we will consider two

examples.

Example 2.2.2. Consider two symmetries X1 and X3 of (2.1), the adjoint representation

Ad(eµX1)X3 of X1 and X3 is given by

Ad(eµX1)X3 =
∞∑
k=0

µk

k!
(AdX1)kX3

= X3 − µ[X1, X3] +
µ2

2!
[X1, [X1, X3]]− · · ·

= X3 − (2(q − p)X1) +
µ2

2!
[X1, 2(q − p)X1]− · · ·

= X3 − 2(q − p)µX1 +
µ2

2!
(0)

= X3 − 2(q − p)µX1.
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Example 2.2.3. Consider two symmetries X2 and X3 of (2.1), the adjoint representation

Ad(eµX2)X3 of X2 and X3 is given by

Ad(eµX3)X2 =
∞∑
k=0

µk

k!
(AdX3)kX2

= X2 − µ[X3, X2] +
µ2

2!
[X3, [X3, X2]]− µ3

3!
[X3, [X3, [X3, X2]]] + · · ·

= X2 − µ(−qX2) +
µ2

2!
[X3,−qX2]− µ3

3!
[x3, [X3,−qX2]] + · · ·

= X2 − µ(−qX2) +
µ2

2!
(−q)2X2 −

µ3

3!
(−q)2[X3, X2] + · · ·

= X2 − µ(−qX2) +
µ2

2!
(−q)2X2 −

µ3

3!
(−q)3X2 + · · ·

= (1 + µq +
(µq)2)

2
+

(µq)3

3!
+ · · · )X2

= eµqX2.

The full calculations of the adjoint representations Ad(eµXi)Xj where i, j = 1, 2, 3 are

summarised in Table 2.2. According to the method of constructing one-dimensional

Ad(eµXi)Xj X1 X2 X3

X1 X1 X2 X3 − 2(q − p)µX1

X2 X1 X2 X3 − qµX2

X3 e2(q−p)µX1 eqµX2 X3

Table 2.2: Table of Adjoint representations of (2.1)

optimal system suggested by Olver [20], we set up a non-zero vector field or operator

X = a1X1 + a2X2 + a3X3 (2.49)

with arbitrary coefficients a1, a2 and a3. The task is to simplify as many of the coefficients

ai as possible by acting on it by Ad(eµXi) of a group generated by Xi, this process of

adjoint action eliminates ajXj where j can be equal to i. The process is repeated until

no further simplification is possible.

Firstly, suppose that a3 6= 0 and set a3 = 1 without loss of generality. Then the vector

X becomes

X = a1X1 + a2X2 +X3. (2.50)
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To eliminate the coefficient of X1, we act on such a vector X by Ad(e
a1

2(q−p)
X1), the vector

becomes

X ′ = Ad(e
a1

2(q−p)
X1)X

= a1X1 + a2X2 +X3 −
a1

2(q − p)
2(q − p)X1

= a2X2 +X3.

(2.51)

We continue to eliminate the coefficient of X2 by acting on X ′ by Ad(e
a2
q
X2), then the

vector becomes

X ′′ = Ad(e
a2
q
X2)X ′

= a2X2 +X3 −
a2

q
qX2

= X3.

(2.52)

Therefore X is equivalent to X3 under the adjoint representation, that is, every one-

dimensional subalgebra generated by a vector X with a3 6= 0 is equivalent to a subalgebra

spanned by X3.

Secondly, suppose that a3 = 0 and a1 6= 0. Scaling X if necessary we assume that a1 = 1,

then the vector X becomes

X = X1 + a2X2. (2.53)

We act on X by Ad(eµX3) a group generated by X3 so that

X ′ = Ad(eµX3)X

= e2µ(q−p)X1 + a2e
µqX2.

(2.54)

The vector X ′ is a scalar multiple of the vector X ′′ = X1 +a2e
2µp−µqX2, hence depending

on the sign of a2 we can make the coefficient of X2 either +1 or −1. Thus any one-

dimensional subalgebra generated by X with a3 = 0 and a1 6= 0 is equivalent to a

subalgebra spanned by X1 +δX2 where δ = +1,−1. No further simplification is possible.

Thirdly, suppose that a3 = 0, a2 = 0 and a1 6= 0. Scaling X we let a1 = 1, then the

vector X becomes

X = X1 (2.55)

which can not be simplified further. Thus any subalgebra generated by X with a3 = 0,

a2 = 0 and a1 6= 0 is equivalent to a subalebra spanned by X1. No further simplifications

on X are possible.
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Lastly, suppose that a1 = a3 = 0 and a2 6= 0. Scaling X we let a2 = 1, then the vector

X becomes

X = X2 (2.56)

which can not be simplified further. Thus any subalgebra generated by X with a1 =

a3 = 0 and a2 6= 0 is equivalent to a subalebra spanned by X2. No further simplifications

on X are possible.

In summary, an optimal system of one-dimensional subalgebras is spanned by

X3,

X1 + δX2; δ = ±1,

X2,

X1.

(2.57)

Optimal systems of different subcases of equation (2.1) considered in Section 2.1 are

summarized in Table 2.3.

Subcase Subalgebras Conditions on constant(s)

2.1.1 {X1, X2, X3, aX1 +X3, X1 + δX2} δ = ±1, a 6= 0

2.1.2 {X1, X2, X3, bX2 +X3, X1 + δX2} δ = ±1, b 6= 0

2.1.3 {Linear combination of X1, X2, X3}

2.1.4 {X1, X2, X3, X1 + δX2} δ = ±1

2.1.5 {X1, X2, X3, bX2 +X3, X1 + δX2} δ = ±1, b 6= 0

2.1.6 {X1, X2, X3, X1 + δX2} δ = ±1

2.1.7 {X1, X2, X3, X1 + δX2, aX1 +X3} δ = ±1, a 6= 0

2.1.8 {X1, X2, X3, X1 + δX2} δ = ±1

2.1.9 {X1, X2, X3, X1 + δX2} δ = ±1

Table 2.3: Optimal system of one-dimensional subalgeras of subcases of (2.1)
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2.3 Symmetry reductions and invariant solutions

In this section, we perform all possible similarity (symmetry) reductions and construct

invariant solutions using the optimal system obtained in Section 2.2. That is, a symmetry

or linear combination of symmetries is utilized to reduce a PDE into an (ODE) and

then an appropriate fundamental method is employed to solve the ODE. Below we give

calculations for subcases 2.1.3, 2.1.7 and present the rest in a tabular form.

Subcase 2.1.3

We note that the symmetry Lie algebra is infinite dimensional and thus, only the finite

part of the Lie algebra is considered. Invariance under one of X1, X2 and X3 is trivial,

hence we take any linear combination of X1, X2 and X3.

(a) Invariance under X1 +X2. The characteristic equations are given by

dt

1
=
dx

1
=
du

0
(2.58)

which give similarity variables as J1 = x − t and J2 = u, therefore the invariant

solution J2 = f(J1) is

u(t, x) = f(x− t). (2.59)

Substituting (2.59) into (2.34) we obtain the following ODE

f ′′′ − f ′′ − f ′ = 0 (2.60)

where “′” denotes differentiation with respect to J1 = x− t, and it solves to

f(J1) =
exp

(
(1−
√

5)J1
2

) [
−K1(1 +

√
5) +K2(−1 +

√
5) exp

(√
5J1

)]
2

+K3 (2.61)

where K1, K2, K3 are arbitrary constants. Finally the invariant solution becomes

u(t, x) =
exp

(
(1−
√

5)(x−t)
2

) [
K2(
√

5− 1) exp
(√

5(x− t)
)
−K1(1 +

√
5)
]

2
+K3.

(2.62)

(b) Invariance under X1 +X3. The characteristics equations are given by

dt

1
=
dx

0
=
du

u
. (2.63)

28



Solving the characteristic equation give the similarity variables as J1 = x and

J2 = ue−t. Therefore the invariant solution J2 = f(J1) is given by

u(t, x) = etg(x). (2.64)

Substituting (2.64) into (2.34) gives the following ODE

g − 2g′′ = 0, (2.65)

where “′” denotes differentiation with respect to the variable J1 = x. The solution

of equation (2.65) is

g(x) = K4 exp

{√
1

2
x

}
+K5 exp

{
−
√

1

2
x

}
, (2.66)

where K4 and K5 are arbitrary constants. Hence the invariant solution is given by

u(t, x) = K4 exp

{
t+

√
1

2
x

}
+K5 exp

{
t−
√

1

2
x

}
. (2.67)

(c) Invariance under X1 +X2 −X3. The characteristic equations are given by

dt

1
=
dx

1
=

du

−u
(2.68)

and yields the invariants J1 = x− t and J2 = uet. Therefore the invariant solution

is

u(t, x) = e−th(x− t). (2.69)

Substituting (2.69) into (2.34) gives the following ODE

h+ h′ − h′′′ = 0, (2.70)

where “′” denotes differentiation with respect to J1 = x − t. Using Mathematica

[25], the approximate roots to the auxilliary equation of (2.70) are r1 = 1.32472

and r2,3 = −0.662359± 0.56228i. Hence, we obtain

h(J1) = K6e
r1J1 + er2J1 [K7 cos(r3J1) +K8 sin(r3J1)] (2.71)

where K6, K7 and K8 are arbitrary constants. Therefore, the invariant solution is

given by

u(t, x) = e−t
[
K6e

(x−t)r1 + e(x−t)r2 (K7 cos [r3(x− t)] +K8 sin [r3(x− t)])
]
. (2.72)
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(d) Invariance under αX2 +X3; α 6= 0. The characteristic equations are given by

dt

0
=
dx

α
=
du

u
(2.73)

which give the invariants J1 = t and J2 = ue−x/α. Therefore the invariant solution

J2 = R(J1) is given by

u(t, x) = ex/αR(t). (2.74)

Substituting (2.74) into (2.34) gives the following ODE(
1− α2

)
R′(t) +R(t) = 0, (2.75)

where “′” denotes differentiation with respect to the variable J1 = t and the solution

is nonzero provided α 6= ±1. The solution of equation (2.75) is

R(t) = K9 exp

{
t

α2 − 1

}
(2.76)

where K9 is an arbitrary constant. Hence the invariant solution is given by

u(t, x) = K9 exp

{
x

α
+

t

α2 − 1

}
. (2.77)

Subcase 2.1.7

Invariances under X1 and X2 are trivial hence not considered.

(a) Invariance under X3. The characteristics equations are given by

dt

0
=
dx

x
=
du

2u
(2.78)

which give invariants as J1 = t and J2 = u/x2. The invariant solution J2 = f(J1)

is given by

u(t, x) = x2f(t). (2.79)

Substituting (2.79) into (2.42) we obtain the following ODE

f ′ − 6f 2 − 6ff ′ = 0, (2.80)

where “′” denotes differentiation with respect to J1 = t. The solution of equation

(2.80) is given implicitly as

1

6f(t)
+ ln f(t) = −x+K9, (2.81)

where K9 is an arbitrary constant.
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(b) Invariance under X1 + δX2. The characteristics equations are given by

dt

1
=
dx

δ
=
du

0
(2.82)

which give the invariants as J1 = x − δt and J2 = u, hence the invariant solution

J2 = g(J1) is given by

u(t, x) = g(x− δt). (2.83)

Substituting (2.83) into (2.42) we obtain the following ODE

δgg′′′ + δg′g′′ − gg′′ − g′2 − δg′ = 0, (2.84)

where “′” denotes differentiation with respect to J1 = x− δt.

(c) Invariance under aX1 +X3. The characteristics equations are given by

dt

a
=
dx

x
=
du

2u
(2.85)

which give the invariants as J1 = xe−t/a and J2 = ue−2t/a. Therefore the invariant

solution is

u(t, x) = e2t/ah(xe−t/a). (2.86)

Substituting (2.86) into (2.42) we obtain the following ODE

J1h
′ + (1 + a)h′

2 − J1h
′h′′ − 2h+ ahh′′ − J1hh

′′′ = 0, (2.87)

where “′” denotes differentiation with respect to J1 = xe−t/a.

The group invariant solutions for the general case and other subcases are summarized

in Table 2.4. The nonzero functions F , G, Fi, Gi and Hi of their respective arguments

satisfy the ODEs
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2F + 2p(p− q)F p−1F ′2 + qF q−1
[
(q − 2)F ′2 + qzF ′F ′′

]
+ 2(p− q)F pF ′′

−qzF ′ + F q [2(q − 1)F ′′ + qzF ′′′] = 0, (2.88)(
pG′2 +GG′′

)
Gp−1 − δG′

(
qGq−1G′′ − 1

)
− δGqG′′′ = 0, (2.89)

γ2F ′1 − 2(2 + γ)(F γ+1
1 + F γ

1 F
′
1) = 0, (2.90)

cG′1 +Gγ−1
1 [γG′1

2 − cγG′1G′′1 +G1(G′′1 − cG′′′1 )] = 0, (2.91)

(2H1 − γκH ′1)H1−γ
1 + γ(γ − a− 2)H ′1

2
+ γ2κH ′1H

′′
1

+H1[(2γ − a− 2)H ′′1 + γκH ′′′1 ] = 0, (2.92)

F 2
2 + p2F p

2F
′
2

2 − F2F
′′
2 + pF p+1

2 F ′′2 = 0, (2.93)

δG′2 + pGp−1
2 G′2

2
+Gp

2G
′′
2 − δG′′′2 = 0, (2.94)

p
(
pH ′2

2 +H2H
′′
2

)
H2

p−1 +H2 − bH ′2 −H ′′2 + bH ′′′2 = 0, (2.95)

F ′4
2

+ φF ′4(1− F ′′4 ) + 2F ′′4 − F4(2 + φF ′′′4 ) = 0, (2.96)

δG′4(G′′4 − 1)−G′′4 + δG4G
′′′
4 = 0, (2.97)

F5 + F ′5
2 − F ′′5 + F5F

′′
5 = 0, (2.98)

δG′5 +G′5
2

+G5G
′′
5 − δG′′′5 = 0, (2.99)

(b−H ′5)H ′5 +H ′′5 −H5 (1 +H ′′5 )− bH ′′′5 = 0, (2.100)

2(p− 1)(pF ′6
2

+ F6F
′′
6 )F p−1

6 + F ′6[ω(F ′′6 − 1)− F ′6] + F6(2 + ωF ′′′6 ) = 0, (2.101)

δG′6(G′′6 − 1) + δG6G
′′′
6 −G

p−1
6 (pG′6

2
+G6G

′′
6) = 0, (2.102)

[qθF ′7 − 2 (F7 − qF ′′7 )]F 1−q
7 − q(q − 2)F ′7

2 − q2θF ′7F
′′
7

−F7 [2(q − 1)F ′′7 + qθF ′′′7 ] = 0, (2.103)

δG′7
(
qGq−1

7 G′′7 − 1
)
−G′′7 + δGq

7G
′′′
7 = 0, (2.104)

[F ′8 (qϑ+ 2[q − 1]F ′8) + 2F8 ([q − 1]F ′′8 − 1)]F 1−q
8 − q(q − 2)F ′28

−q2ϑF ′8F
′′
8 − F8 [2(q − 1)F ′′8 + qϑF ′′′8 ] = 0, (2.105)

G′8
(
δ − δqGq−1

8 G′′8 +G′8
)

+G8G
′′
8 − δG

q
8G
′′′
8 = 0. (2.106)
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Equation Invariant solution Generated by sublagebra

(2.1)

t1/(q−p)F (z) : z = tq/2(p−q)x X3

G(x− δt) X1 + δX2

(2.30)

x2/γF1(t) X3

G1(x− δt) X1 + δX2

e2t/aH1(κ) : κ = xe−γt/a aX1 +X3

(2.32)

t−1/pF2(x) X3

G2(x− δt) X1 + δX2

t−1/pH2(ς) : ς = x+ (b ln t)/p bX2 +X3

(2.36)
tF4(φ) : φ = t−1/2x X3

G4(x− δt) X1 + δX2

(2.38)

t−1F5(x) X3

G5(x− δt) X1 + δX2

t−1H5(ψ) : x+ b ln t bX2 +X3

(2.40)

t1/(1−p)F6(ω) : ω = t−1/2(1−p)x X3

G6(x− δt) X1 + δX2

(2.44)

t1/qF7(θ) : θ = t−1/2x X3

G7(x− δt) X1 + δX2

(2.46)

t1/(q−1)F8(ϑ) : ϑ = t1/2(1−q)x X3

G8(x− δt) X1 + δX2

Table 2.4: Group invariant solutions of (2.1) and subcases of (2.1)

2.4 Graphical Solutions

In this section, we present graphical solutions of group invariant solutions that were

expressed explicitly in terms of independent variables t and x. Graphs of exact solutions

of subcase 2.1.3 are presented below.
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Figure 2.1: Solution (2.62) with K1 = K2 = 1,K3 = 0.

Figure 2.2: Solution (2.67) with K4 = K5 = 1.

Figure 2.3: Solution (2.72) with K6 = K7 = K8 = 1.
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Figure 2.4: Solution (2.77) with K9 = 1, α = 2.

2.5 Conclusion

In this chapter we obtained the symmetry Lie algebra of the pseudo-parabolic PDE

for power law in diffusion coefficient with constant viscosity, different subcases were

considered. Optimal systems of one-dimensional subalgebras were then derived, and

subsequently used to perform symmetry reductions and construct group invariant solu-

tions. Graphical solutions were presented where group invariant solutions were expressed

explicitly in terms of the independent variables.
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Chapter 3

Symmetries and Invariant Solutions

of a pseudo-parabolic PDE: Model II

In this chapter we consider the pseudo-parabolic PDE (5)

ut = (emu(u+ e−nuut)x)x. (3.1)

Firstly, we perform Lie symmetry analysis of a general of a general case m 6= n for

m,n > 0. Secondly, we consider particular cases of (3.1) for different values of m and n

which arises from the analysis of the general case and other cases of interest. In each case

the Lie point symmetries are obtained and then used to perform symmetry reductions

and/or construct group invariant solutions.

3.1 Lie point symmetries

According to Lie’s algorithm, the generator of Lie point symmetries of (3.1) is

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(3.2)

if and only if

X [3](ut − (emu(u+ e−nuut)x)x)|(3.1) = 0, (3.3)
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where X [3] is the third prolongation of X given by

X [3] = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ ζtxx

∂

∂utxx
.

From (3.3), we have(
− e(m−n)uζtxx − (m− 2n)e(m−n)uuxζtx + (1 + ne(m−n)u((m− n)u2

x + uxx))ζt

−emu(1− ne−nuut)ζxx − e(m−n)u(2ux(e
num+ n(n−m)ut) + (m− 2n)utx)ζx

+e(m−n)u(−enum(mu2
x + uxx)

+(n−m)(−n((m− n)u2
x + uxx)ut + (m− 2n)uxutx + utxx))η

)∣∣
(3.1)

= 0,

(3.4)

where the coefficients ζt, ζx, ζtx, ζxx are given respectively by equations (1.23), (1.24),

(1.26), (1.27), and (2.6). Substitution of equations (1.23), (1.24), (1.26), (1.27), and (2.6)

into (3.4) yields an overdetermined system of linear homogeneous partial differential

equations (determining equations) that can be solved for the coefficients ξ1, ξ2 and η

of the symmetry generator (3.2). Generating the determining equations manually is

easy but tedious, often some terms are omitted by mistake and thus, lead to the wrong

solution.

With the aid of YaLie [7] software package, the determining equations become

ξ1
u = 0, (3.5)

ξ2
u = 0, (3.6)

ξ1
x = 0, (3.7)

ξ2
t = 0, (3.8)

nηu − ηuu = 0, (3.9)

(2n−m)ηu − 2ηuu = 0, (3.10)

(2mn− 2n2)ηu + (3n−m)ηuu − ηuuu = 0, (3.11)

(2n−m)ηx − 2ηxu + ξ2
xx = 0, (3.12)

nη − ne−nuηt + ξ1
t + e−nuηtu = 0, (3.13)

(2mn− 2n2)ηx + (4n−m)ηxu − 2ηxuu − nξ2
xx = 0, (3.14)

mnη +mηu + ηuu −
(
mne−nu − n2e−nu

)
ηt +mξ1

t −
(
2ne−nu −me−nu

)
ηtu

+e−nuηtuu = 0, (3.15)

37



ηxx − ηt + e−nuηtxx = 0, (3.16)

(n−m)η + 2ξ2
x + ne(m−n)uηxx − e(m−n)uηxxu = 0, (3.17)

2mηx + 2ηxu − ξ2
xx −

(
2ne−nu −me−nu

)
ηtx + 2e−nuηtxu = 0, (3.18)

where the subscripts denote partial derivatives with respect to the indicated variable(s).

From equations (3.5) and (3.7) we obtain

ξ1 = ξ1(t). (3.19)

From equations (3.6) and (3.8) we obtain

ξ2 = ξ2(x). (3.20)

From (3.9) and (3.10), we get

mηu = 0

which implies

η = η(t, x), since m 6= 0. (3.21)

From (3.12), (3.13), (3.14) and (3.21), we obtain

η = l1, (3.22)

where l1 is a constant of integration. From (3.12) and (3.22), we obtain

ξ2(x) = l2x+ l3, (3.23)

where l2 and l3 are constants of integration. Substituting (3.22) and (3.23) into (3.17)

we obtain

l1 =
2

m− n
l2 = η. (3.24)

Also, substituting equations (3.22), (3.23) and (3.24) into equations (3.13) and (3.15) we

get

ξ1(t) =
2nl2t

n−m
+ l3, (3.25)

where l3 is a constant of integration. The remaining equations are identically satisfied.

Therefore the Lie point symmetries of (3.1) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 =
2nt

n−m
∂

∂t
+ x

∂

∂x
+

2

m− n
∂

∂u
≈ 2nt

∂

∂t
+ (n−m)x

∂

∂x
− 2

∂

∂u
.

(3.26)
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We now consider particular cases of (3.1) and find corresponding Lie point symmetries.

Subcase 3.1.1. m = n.

When m = n equation (3.1) becomes

ut = (emu(u+ e−muut)x)x (3.27)

and the Lie point symmetries of (3.27) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = mt
∂

∂t
− ∂

∂u
.

(3.28)

Subcase 3.1.2. m = 0 and n 6= 0.

When m = 0 and n 6= 0 equation (3.1) becomes

ut = (u+ e−nuut)xx (3.29)

and the Lie point symmetries of (3.29) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = 2nt
∂

∂t
+ nx

∂

∂x
− 2

∂

∂u
.

(3.30)

Subcase 3.1.3. m 6= 0 and n = 0.

When m 6= 0 and n = 0 equation (3.1) becomes

ut = (emu(u+ ut)x)x (3.31)

and the Lie point symmetries of (3.31) are given by

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = mx
∂

∂x
+ 2

∂

∂u
.

(3.32)

Remark 3.1.1. Subcases 3.1.1, 3.1.2 and 3.1.3 are recovered from the general case.
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3.2 Optimal system of subalgebras

All the cases in the last section have three-dimensional Lie algebra, any linear combi-

nation of the Lie point symmetries can be used to perform symmetry reduction, and

hence construct an invariant solution of the equation. However, in order to obtain all

possible linear combinations without guessing or a good combination, an optimal system

of one-dimensional subalgebras is constructed. In constructing one-dimensional system

[20], we illustrate with an example by considering the Lie algebra having the basis (3.26),

the rest of the cases are presented without derivation.

Example 3.2.1. Consider two symmetries of (3.1), say X1 and X3, then a non-zero

commutator [X1, X3] is given by

[X1, X3] = X1(X3)−X3(X1)

=
∂

∂t

(
2nt

∂

∂t
+ (n−m)x

∂

∂x
− 2

∂

∂u

)
−
(

2nt
∂

∂t
+ (n−m)x

∂

∂x
− 2

∂

∂u

)
∂

∂t

= 2n
∂

∂t

= 2nX1.

The full calculations of the commutators [Xi, Xj] where i, j = 1, 2, 3 are summarised

in Table 3.1. To compute the adjoint representation, say Ad(eµXi)Xj of Xi and Xj we

↗ [Xi, Xj] X1 X2 X3

X1 0 0 2nX1

X2 0 0 (n−m)X2

X3 −2nX1 −(n−m)X2 0

Table 3.1: Table of commutators of (3.1)

will make use of Table 3.1 and equation (2.48). As an illustration we will consider two

examples.

Example 3.2.2. Consider two symmetries X2 and X3 of (3.1), the adjoint representation
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Ad(eµX2)X3 of X2 and X3 is given by

Ad(eµX2)X3 =
∞∑
k=0

µk

k!
(AdX2)kX3

= X3 − µ[X2, X3] +
µ2

2!
[X2, [X2, X3]]− · · ·

= X3 − µ(n−m)X2 +
µ2

2!
[X2, (n−m)X2]− · · ·

= X3 − µ(n−m)X2 +
µ2

2!
(0)

= X3 − µ(n−m)X2.

Example 3.2.3. Consider two symmetries X3 and X1 of (3.1), the adjoint representation

Ad(eµX1)X3 of X1 and X3 is given by

Ad(eµX3)X1 =
∞∑
k=0

µk

k!
(AdX3)kX1

= X1 − µ[X3, X1] +
µ2

2!
[X3, [X3, X1]]− µ3

3!
[X3, [X3, [X3, X1]]] + · · ·

= X1 − µ(−2nX1) +
µ2

2!
[X3,−2nX1]− µ3

3!
[x3, [X3,−2nX1]] + · · ·

= X1 − µ(−2nX1) +
µ2

2!
(−2n)2X1 −

µ3

3!
(−2n)2[X3, X1] + · · ·

= X1 − µ(−2nX1) +
µ2

2!
(−2n)2X1 −

µ3

3!
(−2n)3X1 + · · ·

= (1 + µ2n+
(µ2n)2

2
+

(µ2n)3

3!
+ · · · )X1

= eµ2nX1.

The full calculations of the adjoint representations Ad(eµXi)Xj where i, j = 1, 2, 3 are

summarised in Table 3.2. We set a non-zero vector field or operator

Ad(eµXi)Xj X1 X2 X3

X1 X1 X2 X3 − 2nµX1

X2 X1 X2 X3 − (n−m)µX2

X3 e2nµX1 e(n−m)µX2 X3

Table 3.2: Table of Adjoint representations of (3.1)
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X = a1X1 + a2X2 + a3X3 (3.33)

with arbitrary coefficients a1, a2 and a3. The task is to simplify as many of the coefficients

ai as possible by acting on it by Ad(eµXi) of a group generated by Xi, this process of

adjoint action eliminates ajXj where j can be equal to i. The process is repeated until

no further simplification is possible.

Firstly, suppose that a3 6= 0 and set a3 = 1 without loss of generality. Then the vector

X becomes

X = a1X1 + a2X2 +X3. (3.34)

To eliminate the coefficient of X1, we act on such a vector X by Ad(e
a1
2n
X1), the vector

becomes

X ′ = Ad(e
a1
2n
X1)X

= a1X1 + a2X2 +X3 −
a1

2n
2nX1

= a2X2 +X3.

(3.35)

We continue to eliminate the coefficient of X2 by acting on X ′ by Ad(e
a2

n−m
X2), then the

vector becomes

X ′′ = Ad(e
a2

n−m
X2)X ′

= a2X2 +X3 −
a2

n−m
(n−m)X2

= X3.

(3.36)

Therefore X is equivalent to X3 under the adjoint representation, that is, every one-

dimensional subalgebra generated by a vector X with a3 6= 0 is equivalent to a subalgebra

spanned by X3.

Secondly, suppose that a3 = 0 and a1 6= 0. Scaling X if necessary we assume that a1 = 1,

then the vector X becomes

X = X1 + a2X2. (3.37)

We act on X by Ad(eµX3) a group generated by X3 so that

X ′ = Ad(eµX3)X

= e2nµX1 + a2e
µ(n−m)X2.

(3.38)
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The vector X ′ is a scalar multiple of the vector X ′′ = X1+a2e
−µ(m+n)X2, hence depending

on the sign of a2 we can make the coefficient of X2 either +1 or −1. Thus any one-

dimensional subalgebra generated by X with a3 = 0 and a1 6= 0 is equivalent to a

subalgebra spanned by X1 +δX2 where δ = +1,−1. No further simplification is possible.

Thirdly, suppose that a3 = 0, a2 = 0 and a1 6= 0. Scaling X we let a1 = 1, then the

vector X becomes

X = X1, (3.39)

which can not be simplified further. Thus any subalgebra generated by X with a3 = 0,

a2 = 0 and a1 6= 0 is equivalent to a subalebra spanned by X1. No further simplifications

on X are possible.

Lastly, suppose that a1 = a3 = 0 and a2 6= 0. Scaling X we let a2 = 1, then the vector

X becomes

X = X2, (3.40)

which can not be simplified further. Thus any subalgebra generated by X with a1 =

a3 = 0 and a2 6= 0 is equivalent to a subalebra spanned by X2. No further simplifications

on X are possible.

In summary, an optimal system of one-dimensional subalgebras is spanned by

X3,

X1 + δX2, δ = ±1,

X2,

X1.

(3.41)

Optimal systems of different subcases of equation (3.1) considered in Section 3.1 are

summarized in Table 3.3.

3.3 Symmetry reductions and invariant solutions

In this section, we perform all possible similarity (symmetry) reductions and construct

invariant solutions for subcase 3.1.3 using the optimal system obtained in Section 3.2.
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Subcase Subalgebras Conditions on constant(s)

3.1.1 {X1, X2, X3, aX2 +X3, X1 + δX2} δ = ±1, a 6= 0

3.1.2 {X1, X2, X3, X1 + δX2} δ = ±1

3.1.3 {X1, X2, X3, aX1 +X3, X1 + δX2} δ = ±1, a 6= 0

Table 3.3: Optimal system of one-dimensional subalgeras of subcases of (3.1)

Subcase 3.1.3

Invariance under X1 and X2 are trivial hence not considered.

(a) Invariance under X3. The characteristics equations are given by

dt

0
=

dx

mx
=
du

2
. (3.42)

Solving the characteristic equation give the similarity variables as J1 = t and

J2 = u− ln(x2)/m, therefore the invariant solution J2 = f(J1) is given by

u(t, x) =
lnx2

m
+ f(t). (3.43)

Substituting (3.43) into (3.31) gives the following ODE

mf ′ − 2emf = 0, (3.44)

where “′” denotes differentiation with respect to the variable J1 = t and it solves

to

f(t) = − ln(C − 2t)

m
(3.45)

where C is a constant of integration. Therefore the invariant solution becomes

u(t, x) = ln

(
x2

C − 2t

)1/m

. (3.46)

(b) Invariance under X1 + δX2. The characteristic equations are given by

dt

1
=
dx

δ
=
du

0
(3.47)

which give similarity variables as J1 = x − δt and J2 = u, therefore the invariant

solution J2 = g(J1) is

u(t, x) = g(x− δt). (3.48)
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Substituting (3.48) into (3.31) we obtain the following ODE

emg3(δg′′′3 − g′′3)− g′3(δ +memg3(g′3 − δg′′3)) = 0, (3.49)

where “′” denotes differentiation with respect to J1 = x− t.

(c) Invariance under aX1 +X3. The characteristic equations are given by

dt

a
=

dx

mx
=
du

2
(3.50)

which give the invariants J1 = e−mt/ax and J2 = u − 2t/a, therefore the invariant

solution J2 = h(J1) is

u(t, x) =
2t

a
+ h(e−mt/ax). (3.51)

Substituting (3.51) into (3.31) we obtain the following ODE

2 +m(m− a)emh3h′3
2

+ (2m− a)emh3h′′3 +mψh′3(memh3h′′3 − 1)

+mψemh3h′′′3 = 0 (3.52)

where “′” is the derivative with respect to J1 = e−mt/ax.

The group invariant solutions for the general case and other subcases are summarized

in Table 3.4. The nonzero functions F , G, Fi, Gi and Hi of their respective arguments

satisfy the ODEs

2enF + emF [m(m− n+ 2nenF)F ′2 + 2(m+ nenF)F ′′]

(n−m)z[enFF ′ − emF(n(n−m)F ′3 + (m− 3n)F ′F ′′ + F ′′′)] = 0, (3.53)

δenGG ′ + e(m+n)G(mG ′2 + G ′′) + δemG[n(m− n)G ′3 + (m− 3n)G ′G ′′ + G ′′′] = 0, (3.54)

1 +m2emF1F ′1
2

+m(1 + emF1)F ′′1 = 0, (3.55)

memG1G ′1
2

+ emG1G ′′1 + δ(1 + 2mG ′′1 )G ′1 − δG ′′′1 = 0, (3.56)

1−mκ2(2a− emH1)H′1
2

+ κ2(3a+m+memH1)H′′1 + aκ3H′′′1
+mH′1(κ(1 + emH1)− 2aκ2H′′1) = 0, (3.57)

2enF2 − n3ςF ′2 + 2nenF2F ′′2 + nςF ′2(enF2 + 3nF ′′2 )− nςF ′′′2 = 0, (3.58)

δn2G ′2
3 − enG2G ′′2 − δG ′2(enG2 + 3nG ′′2 ) + δG ′′′2 = 0. (3.59)
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Equation Invariant solution Generated by sublagebra

(3.1)
− ln t

n
+ F(z) : z = t(m−n)/2nx X3

G(x− δt) X1 + δX2

(3.27)

− ln t
m

+ F1(x) X3

G1(x− δt) X1 + δX2

− ln t
m

+H1(κ) : κ = t−a/mex aX2 +X3

(3.29)
− ln t

n
+ F2(ς) : ς = t−1/2x X3

G2(x− δt) X1 + δX2

Table 3.4: Group invariant solutions of (3.1) and subcases of (3.1)

3.4 Graphical solutions

The graphical solution of group invariant solution of subcase 3.1.3 is presented below.

Figure 3.1: Solution (3.46) with C = 21,m = 1.

3.5 Conclusion

In this chapter we obtained the symmetry Lie algebra of the pseudo-parabolic PDE for

exponential law in diffusion coefficient and viscosity, different subcases were considered.

Optimal systems of one-dimensional subalgebras were then derived, and subsequently

used to perform symmetry reductions and construct group invariant solutions. The
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graphical solution was presented.
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Chapter 4

Approximate symmetry analysis of a

perturbed pseudo-parabolic PDE:

Model III

Partial differential equations with small parameter are widely used as mathematical mod-

els to describe non linear phenomena in various fields of mathematics, engineering and

physical sciences such as mechanics, optics, e.t.c. For these perturbed equations, inves-

tigation of the analytic solutions play an important role in these related fields. Various

perturbation methods have been developed to solve these equations, such as homotopy

perturbation method, Adomian decomposition method, inverse scattering transformation

method, e.t.c. [3].

In the 1980s Baikov, Gazizov and Ibragimov [2, 3] developed a method called approxi-

mate symmetry method, which is the combination of Lie group theory and perturbation

analysis. In this method, the Lie operator is expanded in a perturbation series so that

an approximate operator can be found. Also there is another method developed by

Fushchich and Shtelen [11], where the dependent variables are expanded in a perturba-

tion series; equations are separated at each order of approximation and the approximate

symmetries of the original equations are defined to be the exact symmetries of the system

obtained from equating to zero the coefficients of the smallness parameter.
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In this work, the method due to Baikov et al. will be used to find the approximate

symmetries. The definitions, theorems, proofs and notations of the theory of approximate

symmetries in the first-order precision are based upon the references [16, 17].

4.1 Preliminaries

4.1.1 Notations and definitions

Consider a set of smooth vector functions depending on vector x and a group parameter

a:

f0(x, a), f1(x, a)

with coordinates

f i0(x, a), f i1(x, a), i = 1, . . . , n.

Let us define the one-parameter family G of approximate transformations

x̄i ≈ f i0(x, a) + f i1(x, a), i = 1, . . . , n. (4.1)

of points x = (x1, . . . , xn) ∈ Rn into points x̄ = (x̄1, . . . , x̄n) ∈ Rn as the class of the

invertible transformations

x̄ = f(x, a, ε) (4.2)

with vector-functions f = (f 1, . . . , fn) such that

f i(x, a, ε) ≈ f i0(x, a) + f i1(x, a), i = 1, . . . , n.

Here a is a real parameter, and the following condition is imposed:

f(x, 0, ε) ≈ x.

Furthermore, it is assumed that the transformation (4.2) is defined for any value of a from

a small neighborhood of a = 0, and that, in this neighborhood, the equation f(x, a, ε) ≈ x

yields a = 0.
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Definition 4.1.1. The set of transformations (4.1) is called a one-parameter approximate

transformation group if

f(f(x, a, ε), b, ε) ≈ f(x, a+ b, ε)

for all transformations (4.2).

Remark 4.1.1. Here, unlike the usual classical Lie group theory, f does not necessarily

denote the same function at each occurrence. It can be replaced by any function g ≈ f .

Definition 4.1.2. The generator of an approximate transformation group G given by

(4.2) is the class of first-order linear differential operators

X = ξi(x, ε)
∂

∂xi
(4.3)

such that

ξi(x, ε) ≈ ξi0(x) + εξi1(x),

where the vector fields ξ0, ξ1 are given by

ξi0 =
∂f i0(x, a)

∂a

∣∣∣∣
a=0

, ξi1 =
∂f i1(x, a)

∂a

∣∣∣∣
a=0

, i = 1, . . . , n.

In what follows, an approximate group generator

X ≈ (ξi0(x) + εξi1(x))
∂

∂xi

is written simply as

X = (ξi0(x) + εξi1(x))
∂

∂xi
. (4.4)

Approximate Lie equations

Consider the one-parameter approximate transformation groups (4.1). Let

X = X0 + εX1 (4.5)

be a given approximate operator where

X0 = ξi0(x)
∂

∂xi
, X1 = ξi1(x)

∂

∂xi
.

The corresponding approximate transformation (4.1) of points x into points x̄ = x̄0 + εx̄1

with the coordinates

x̄i = x̄i0 + εx̄i1, (4.6)
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where

x̄i0 = f i0(x, a), x̄i1 = f i0(x, a),

is determined by the following equations:

dx̄i0
da

= ξi0(x̄0), x̄i0
∣∣
a=0

= xi, i = 1, . . . , n, (4.7)

dx̄i1
da

=
n∑
k=1

∂ξi0(x)

∂xk

∣∣∣∣
x=x̄0

x̄k1 + ξi1(x̄0), x̄i1
∣∣
a=0

= 0. (4.8)

Equations (4.7) and (4.8) are called the approximate Lie equations.

Approximate exponential map

Theorem 4.1.1. Given the operator

X = X0 + εX1 (4.9)

with a small parameter ε, where

X0 = ξi0(x)
∂

∂xi
, X1 = ξi1(x)

∂.

∂xi
, (4.10)

the corresponding approximate group transformation

x̄i = x̄i0 + εx̄i1, i = 1, . . . , n, (4.11)

are determined by the following equations:

x̄i0 = eaX0(xi), x̄i1 = 〈〈aX0, aX1〉〉(x̄i0), i = 1, . . . , n, (4.12)

where

eaX0 = 1 + aX0 +
a2

2!
X2

0 +
a3

3!
X3

0 + · · · (4.13)

and

〈〈aX0, aX1〉〉 = aX1 +
a2

2!
[X0, X1] +

a3

3!
[X0, [X0, X1]] + · · · . (4.14)

In other words, the approximate operator X = X0 + εX1 generates the one-parameter

approximate transformation group given by the following approximate exponential map:

x̄i = (1 + ε〈〈aX0, aX1〉〉)eaX0(xi), i = 1, . . . , n. (4.15)
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4.1.2 Approximate symmetries

Definition 4.1.3. Let G be a one-parameter approximate transformation group:

z̄i ≈ f(z, a, ε) ≡ f i0(z, a) + εf i1(z, a), i = 1, . . . , n. (4.16)

An approximate equation

F (z, ε) ≡ F0(z) + εF1(z) ≈ 0 (4.17)

is said to be approximately invariant with respect to G, or admits G if

F (z̄, ε) ≈ F (f(z, a, ε), ε) = o(ε) (4.18)

whenever z = (z1, . . . , zn) satisfies equation (4.17). If z = (x, u, u(1), . . . , u(k)), then

(4.17) becomes an approximate differential equation of order k, and G is an approximate

symmetry group of the differential equation.

Theorem 4.1.2. Equation (4.17) is approximately invariant under the approximate

transformation group (4.16) with generator

X = X0 + εX1 = ξi0(z)
∂

∂zi
+ εξi1(z)

∂

∂zi
, (4.19)

if and only if [
X [k]F (z, ε)

] ∣∣∣∣
F≈0

= o(ε) (4.20)

or equivalently [
X

[k]
0 F0(z) + ε

(
X

[k]
1 F0(z) +X

[k]
0 F1(z)

)] ∣∣∣∣
(4.17)

= o(ε) (4.21)

in which k is order of equation and X [k] is kth-order prolongation of X. The operator

(4.19) satisfying equation (4.21) is called an infinitesimal approximate symmetry of, or

an approximate operator admitted by (4.17). Accordingly, equation (4.21) is termed the

determining equation for approximate symmetries.

Remark 4.1.2. The determining equation (4.21) can be written as follows:

X
[k]
0 F0(z) = λ(z)F0(z), (4.22)

X
[k]
1 F0(z) +X

[k]
0 F1(z) = λ(z)F1(z). (4.23)
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The factor λ(z) is determined by equation (4.22) and then substituted in equation (4.23).

The latter equation must hold for all solutions of F0(z). Comparing equation (4.22) with

the determining equation of exact symmetries, we obtain the following statement.

Theorem 4.1.3. If equation (4.17) admits an approximate transformation group with

the generator X = X0 + εX1, where X0 6= 0, then the operator

X0 = ξi0
∂

∂zi
(4.24)

is an exact symmetry of the equation

F0(z) = 0. (4.25)

Remark 4.1.3. It is manifest from equation (4.22) and (4.23) that if X0 is an exact

symmetry of equation (4.25), then X = εX0 is an approximate symmetry of (4.17).

Definition 4.1.4. Equations (4.25) and (4.17) are termed an unperturbed equation and

a perturbed equation respectively. Under the conditions of Theorem (4.1.3), the operator

X0 is called a stable symmetry of the unperturbed equation (4.25). The corresponding

approximate symmetry generator X = X0 + εX1 for the perturbed equation (4.17) is

called a deformation of the infinitesimal symmetry X0 of equation (4.25) caused by the

perturbation εF1(z). In particular, if the most general symmetry Lie algebras of equation

(4.25) is stable, we say that the perturbed equation (4.17) inherits the symmetries of the

unperturbed equation.

Algorithm for calculating approximate symmetries

Remark (4.1.2) and Theorem (4.1.3) provide a simple and convenient algorithm for cal-

culation of the first-order approximate symmetries of equations with a small parameter.

The algorithm consists of the following three steps:

First step: Calculation of the exact symmetries X0 of the unperturbed equation (4.25),

e.g., by solving the determining equation

X
[k]
0 F0(z)

∣∣
F0(z)=0

= 0. (4.26)

Second step: Determination of the auxiliary function H by virtue of equations (4.22),

(4.23) and (4.17), i.e., by the equation

H =
1

ε

[
X

[k]
0 (F0(z) + εF1(z))

∣∣
F0(z)+εF1(z)=0

]
(4.27)
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with known X0 and F1(z).

Third step: Calculation of the operators X1 by solving the determining equation for

deformations:

X
[k]
1 F0(z)

∣∣
F0(z)=0

+H = 0. (4.28)

Note that equation (4.28), unlike the determining equation (4.26) for exact symmetries is

inhomogeneous and the prolongation formulas are the same as in the classical Lie theory.

Approximate Lie algebras

Definition 4.1.5. A class of first-order differential operator

X = ξi(z, ε)
∂

∂zi
(4.29)

such that

ξi(z, ε) ≈ ξi0(z) + εξi1(z), i = 1, . . . , n (4.30)

with some fixed functions ξi0(z), ξi1(z), i = 1, . . . , n, is called approximate operator.

Definition 4.1.6. An approximate commutator of the approximate operators X1 and

X2 is an approximate operator denoted by [X1, X2] and is given by

[X1, X2] ≈ X1(X2)−X2(X1). (4.31)

The approximate commutator satisfies the usual properties, namely

i (bi)linearity: [aX1 + bX2, X3] ≈ a[X1, X3] + b[X2, X3], a, b =constants,

ii skew-symmetry: [X1, X2] ≈ −[X2, X1],

iii Jacobi identity: [[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] ≈ 0.

Definition 4.1.7. A vector space L of approximate operators is called an approxi-

mate Lie algebra of operators if it is closed under the approximate commutator, i.e.,

if [X1, X2] ∈ L for any X1, X2 ∈ L.

Remark 4.1.4. Here the approximate commutator [X1, X2] is calculated to the first-

order of precision.

Theorem 4.1.4. A set of approximate symmetries of an equation forms an approximate

Lie algebra.
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Approximate invariants

Definition 4.1.8. An approximate function I(z, ε) is called an approximate invariant of

the group G of transformations (4.16) if for each z ∈ Rn and an admissible a ∈ R

I(z̄, ε) ≈ I(z, ε). (4.32)

Theorem 4.1.5. The approximate functionn is an approximate of the group G with the

generator (4.29) if and only if the approximate equation

XF (z, ε) ≈ 0 (4.33)

hold.

Theorem 4.1.6. Any one-parameter approximate group G with the generator (4.29)

has exactly n− 1 functionally independent approximate invariants of the form

Ik(z, ε) ≈ Ik0 (z) + εIk1 (z), k = 1, . . . , n− 1, (4.34)

and any approximate invariant of G can be represented in the form

I(z, ε) = ϕ0(I1, . . . , In−1) + εϕ1(I1, . . . , In−1), (4.35)

where ϕ0, ϕ1 are arbitrary functions.

Approximately invariant solutions

Approximate invariants for the operator (4.19) are written in the form

J(z, ε) = J0(z) + εJ1(z) + o(ε) (4.36)

and are determined by the equation

X(J) = o(ε), (4.37)

or equivalently

X0(J0) + ε(X1(J0) +X0(J1)) = 0. (4.38)

This equation splits into the system:

X0(J0) = 0, X1(J0) +X0(J1) = 0. (4.39)
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Solving equations (4.39) we will find two functionally independent invariants

J1 = J1
0 (z) + εJ1

1 (z),

J2 = J2
0 (z) + εJ2

1 (z)
(4.40)

for operator (4.19).

Remark 4.1.5. Functions (4.40) are said to be functionally independent if J2 = Ψ(J1),

i.e., if the equation

J2
0 (z) + εJ2

1 (z) = Ψ(J1
0 (z) + εJ1

1 (z)) + o(ε) (4.41)

with a certain function Ψ holds identically in z. If such a function Ψ does not exist, the

functions (4.40) are said to be functionally independent. It is manifest that if J1
0 and J2

0

are functionally independent, then so are the functions (4.40) as well.

4.2 Perturbed pseudo-parabolic PDE: Model IIIa

In this section we consider a perturbed pseudo-parabolic PDE (6)

ut = ((uα + εuβ)(u+ ut)x)x, (4.42)

where ε is a small parameter, while α and β are arbitrary constants. Firstly, we perform

approximate symmetry analysis of a general case α 6= β for α, β > 0. Secondly, we

consider particular cases of (4.42) for different values of α and β which arises from the

analysis of the general case. In each case the approximate symmetries are obtained and

then used to perform symmetry reductions and/or construct group approximate invariant

solutions.

4.2.1 Approximate symmetries

The generator of approximate symmetries of (4.42) is

X = X0 + εX1

=

(
ξ0 ∂

∂t
+ τ 0 ∂

∂x
+ η0 ∂

∂u

)
+ ε

(
ξ1 ∂

∂t
+ τ 1 ∂

∂x
+ η1 ∂

∂u

)
(4.43)
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if and only if

X [3](ut − ((uα + εuβ)(u+ ut)x)x)
∣∣
(4.42)

= o(ε), (4.44)

or equivalently

(X
[3]
0 (ut − (uα(ux + utx))x) + ε(X

[3]
1 (ut − (uα(ux + utx))x)

+X
[3]
0 ((−uβ(u+ ut)x)x)))

∣∣
(4.42)

= 0.
(4.45)

The coefficients ξi, τ i, and ηi (i = 0, 1) are unknown functions of t, x, u and X [3] is the

third prolongation of X. Equation (4.44) is the determining equation for infinitesimal

approximate symmetries.

First step. Calculation of symmetries, X0, of the unperturbed equation:

The symmetry operators X0 of the unperturbed equation (ε = 0)

ut − (uα(ux + utx))x = 0 (4.46)

are obtained by solving the determining equation for exact symmetries

X
[3]
0 (ut − (uα(ux + utx))x)

∣∣
(4.46)

= 0, (4.47)

where X
[3]
0 is the third prolongation of the vector field X0 given by

X
[3]
0 = X0 + ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtx

∂

∂utx
+ ζxx

∂

∂uxx
+ ζtxx

∂

∂utxx
. (4.48)

From equation (4.47) we have(
ζt − uαζtxx − uαζxx − αuα−1uxζtx −

(
αuα−1ux + αuα−1(ux + utx)

)
ζx

−
(
α(α− 1)uα−2ux(ux + utx) + αuα−1(uxx + utxx)

)
η
)∣∣

(4.46)
= 0,

(4.49)

where the coefficients ζt, ζx, ζtx, ζxx and ζtxx are given respectively by equations (1.23),

(1.24), (1.26), (1.27) and (2.6). When expanded , equation (4.49) yields an overdeter-

mined system of linear homogeneous partial differential equations (determining equa-

tions) that can be solved for the coefficients ξ0, τ 0 and η0 of the approximate symmetry

operator (4.43) using the classical Lie symmetry method.

57



With the aid of YaLie [7] software package, the determining equations become

ξ0
u = 0, (4.50)

τ 0
u = 0, (4.51)

η0
uu = 0, (4.52)

ξ0
x = 0, (4.53)

η0
xu = 0, (4.54)

τ 0
t = 0, (4.55)

αuα−1η0
x − uατ 0

xx = 0, (4.56)

uαη0
xx − η0

t + uαη0
txx = 0, (4.57)

αuα−1η0 − 2uατ 0
x = 0, (4.58)

αuα−1η0 − 2uατ 0
x + uαξ0

t + uαη0
tu = 0, (4.59)

(1− α)αuα−2η0 − αuα−1η0
u + 2αuα−1τ 0

x = 0, (4.60)

(1− α)αuα−2η0 − αuα−1η0
u + 2αuα−1τ 0

x − αuα−1ξ0
t − αuα−1η0

tu = 0, (4.61)

2αuα−1η0
x − uατ 0

xx + αuα−1η0
tx = 0, (4.62)

where the subscripts denote partial derivatives with respect to the indicated variable.

From equations (4.50) and (4.53) we have

ξ0 = A(t), (4.63)

where A(t) is an arbitrary function of t. Equations (4.51) and (4.55) give

τ 0 = B(x), (4.64)

where B(x) is an arbitrary function of x. Substituting equation (4.64) into equation

(4.58) we obtain

η0 =
2uB′(x)

α
. (4.65)

Equation (4.52) is identically satisfied by (4.65). Substituting equations (4.63), (4.64),

and (4.65) into equations (4.54), (4.56), (4.57), (4.59), (4.60), (4.61) and (4.62) reduce

to the following equations

B′′(x) = 0, (4.66)

A′(t) = 0. (4.67)
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From equations (4.66) and (4.67), we respectively obtain

B(x) = k1x+ k2, (4.68)

A(t) = k3, (4.69)

where k1, k2 and k3 are constants of integration. Thus,

X0 = k3
∂

∂t
+ (k1x+ k2)

∂

∂x
+

2k1u

α

∂

∂u
. (4.70)

Therefore the unperturbed equation (4.46) admits the three-dimensional Lie algebra with

the basis

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = x
∂

∂x
+

2u

α

∂

∂u
.

(4.71)

Second step: We determine the auxiliary function H given by

H =
1

ε
X

[3]
0

(
ut − ((uα + εuβ)(u+ ut)x)x

) ∣∣
(4.42)

, (4.72)

where X
[3]
0 is the third prolongation of X0 given by

X
[3]
0 = k3

∂

∂t
+ (k1x+ k2)

∂

∂x
+

2k1u

α

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζtx

∂

∂utx

+ζxx
∂

∂uxx
+ ζtxx

∂

∂utxx
(4.73)

and the coefficients ζ ′s are given by

ζt =
2k1

α
ut, (4.74)

ζx =

(
2k1

α
− k1

)
ux, (4.75)

ζtx =

(
2k1

α
− k1

)
utx, (4.76)

ζxx = 2

(
k1

α
− k1

)
uxx, (4.77)

ζtxx = 2

(
k1

α
− k1

)
utxx. (4.78)

Substituting the operator (4.73) into (4.72) and simplifying we obtain the auxiliary func-

tion

H =
2k1(α− β)uβ−1

α
(βu2

x + βuxutx + uuxx + uutxx). (4.79)
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Third step: Now we calculate the operators X1 by solving the inhomogeneous deter-

mining equation for deformations:

X
[3]
1 (ut−(uα(ux+utx))x)

∣∣
(4.46)

+
2k1(α− β)uβ−1

α
(βu2

x+βuxutx+uuxx+uutxx) = 0, (4.80)

where X
[3]
1 is the third prolongation of X1. Expansion of (4.80) yields an overdetermined

system of linear inhomogeneous partial differential equations that can be solved for the

coefficients ξ1, τ 1, and η1. The expansion of

X
[3]
1 (ut − (uα(ux + utx))x)

∣∣
(4.46)

(4.81)

is the same as that of equation (4.49) with superscript zero replaced by one. Thus, the

determining equations of (4.80) become

ξ1
u = 0, (4.82)

τ 1
u = 0, (4.83)

η1
uu = 0, (4.84)

ξ1
x = 0, (4.85)

η1
xu = 0, (4.86)

τ 1
t = 0, (4.87)

αuα−1η1
x − uατ 1

xx = 0, (4.88)

uαη1
xx − η1

t + uαη1
txx = 0, (4.89)

αuα−1η1 − 2uατ 1
x −

2k1(α− β)uβ

α
= 0, (4.90)

αuα−1η1 − 2uατ 1
x + uαξ1

t + uαη1
tu −

2k1(α− β)uβ

α
= 0, (4.91)

(1− α)αuα−2η1 − αuα−1η1
u + 2αuα−1τ 1

x +
2k1β(α− β)uβ−1

α
= 0, (4.92)

(1− α)αuα−2η1 − αuα−1η1
u + 2αuα−1τ 1

x − αuα−1ξ1
t − αuα−1η1

tu

+
2k1β(α− β)uβ−1

α
= 0, (4.93)

2αuα−1η1
x − uατ 1

xx + αuα−1η1
tx = 0, (4.94)

where the subscripts denote partial derivatives with respect to the indicated variable.

From equations (4.82) and (4.85) we have

ξ1 = C(t), (4.95)
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where C(t) is an arbitrary function of t. Equations (4.83) and (4.87) give

τ 1 = D(x), (4.96)

where D(x) is an arbitrary function of x. Substituting equation (4.96) into equation

(4.90) we obtain

η1 =
2uD′(x)

α
+

2k1(α− β)uβ−α+1

α2
. (4.97)

Substituting equation (4.97) into equation (4.84) we have

η1
uu =

2k1(α− β)(β − α + 1)(β − α)uβ−α−1

α2
= 0 (4.98)

which implies that

k1 = 0 (4.99)

or

β = α− 1 (4.100)

since α 6= β. We now consider the two cases separately including the case α = β.

Subcase 4.2.1. k1 = 0.

When k1 = 0, we therefore have

η1 =
2uD′(x)

α
. (4.101)

Substituting equations (4.95), (4.96), (4.99) and (4.101) into (4.88), (4.89), (4.91), (4.92),

(4.93) and (4.94) we get

D′′(x) = 0, (4.102)

C ′(t) = 0. (4.103)

From equations (4.102) and (4.103) we obtain

D(x) = d1x+ d2, (4.104)

C(t) = d3, (4.105)

where d1, d2, and d3 are constants of integration. Thus,

X1 = d3
∂

∂t
+ (d1x+ d2)

∂

∂x
+

2d1u

α

∂

∂u
. (4.106)
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Then, the approximate symmetries of (4.42) are obtained from

X = (k3 + εd3)
∂

∂t
+ [k2 + ε(d1x+ d2)]

∂

∂x
+ ε

2d1u

α

∂

∂u
, (4.107)

and are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = ε

(
x
∂

∂x
+

2u

α

∂

∂u

)
,

v4 = εv1,

v5 = εv2.

(4.108)

Subcase 4.2.2. β = α− 1.

When β = α− 1 we therefore have

η1 =
2uD′(x)

α
+

2k1

α2
. (4.109)

Substitution of equations (4.95), (4.96), (4.100) and (4.109) into (4.88), (4.89), (4.91),

(4.92), (4.93) and (4.94) we get

D′′(x) = 0, (4.110)

C ′(t) = 0. (4.111)

From equations (4.110) and (4.111) we obtain

D(x) = c1x+ c2, (4.112)

C(t) = c3, (4.113)

where c1, c2, and c3 are constants of integration. Thus,

X1 = c3
∂

∂t
+ (c1x+ c2)

∂

∂x
+

(
2c1u

α
+

2k1

α2

)
∂

∂u
. (4.114)

Then, the approximate symmetries of (4.42) are obtained from

X = (k3 + εc3)
∂

∂t
+ [k1x+ k2 + ε(c1x+ c2)]

∂

∂x
+

[
2k1u

α
+ ε

(
2c1u

α
+

2k1

α2

)]
∂

∂u
, (4.115)
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and are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = ε

(
x
∂

∂x
+

2u

α

∂

∂u

)
,

v4 = εv1,

v5 = εv2

v6 = x
∂

∂x
+

(
2u

α
+

2ε

α2

)
∂

∂u
.

(4.116)

Subcase 4.2.3. α = β.

When α = β equation (4.42) becomes

ut = ((uα + εuα)(u+ ut)x)x (4.117)

and the approximate symmetries of (4.42) are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = x
∂

∂x
+

2u

α

∂

∂u
,

v4 = εv1,

v5 = εv2,

v6 = εv3.

(4.118)

Subsubcase 4.2.1. α = β = 1.

When α = β = 1 equation (4.42) becomes

ut = ((u+ εu)(u+ ut)x)x (4.119)
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and the approximate symmetries of (4.42) are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = x
∂

∂x
+ 2u

∂

∂u
,

v4 = εv1,

v5 = εv2,

v6 = εv3.

(4.120)

Subsubcase 4.2.2. α = 0 and β = 1.

When α = 0 and β = 1 equation (4.42) becomes

ut = ((1 + εu)(u+ ut)x)x (4.121)

and the approximate symmetries of (4.42) are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = − ∂

∂t
+ u

∂

∂u
,

v4 = εv1,

v5 = εv2,

v6 = εv3.

(4.122)

4.2.2 Symmetry reductions and approximately invariant solu-

tions

In this section, approximate invariant solutions will be derived from particular linear

combinations of the approximate symmetries obtained in the previous section. We will

consider the two subsubcases, 4.2.1 and 4.2.2.

Subsubcase 4.2.1

In this subsubcase we will consider the combinations v2 +v6, v3 +v5, v3 +v4 and v1 +v6.
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(a) Invariance under v2 + v6. The approximate invariants for v2 + v6 are determined

by the equation (
∂

∂x
+ ε

(
x
∂

∂x
+ 2u

∂

∂u

))
(J0 + εJ1) = o(ε), (4.123)

equivalently
∂

∂x
(J0) = 0, (4.124)

and
∂

∂x
(J1) +

(
x
∂

∂x
+ 2u

∂

∂u

)
(J0) = 0. (4.125)

From equation (4.124) we have characteristic equations

dt

0
=
dx

1
=
du

0
(4.126)

which give the two functionally independent solutions

J1
0 = t (4.127)

and

J2
0 = u. (4.128)

Substituting (4.127) into (4.125) we get

∂

∂x
(J1

1 ) = 0. (4.129)

The simplest solution is

J1
1 = 0, (4.130)

and hence the first invariant is

J1 = t. (4.131)

Substituting (4.128) into (4.125) we get

∂

∂x
(J2

1 ) + 2u = 0, (4.132)

and the corresponding characteristic equation is

dx

1
= −dJ

2
1

2u
(4.133)

which gives

J2
1 = −2xu+ k. (4.134)
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Setting k = 0 we have

J2
1 = −2xu (4.135)

and hence the second invariant is

J2 = u− ε2xu. (4.136)

Thus, the approximately invariant solution J2 = f(J1) is

u− ε2xu = f(t) (4.137)

which implies that

u(t, x) = (1− 2εx)−1 f(t)

≈ (1 + 2εx) f(t) + o(ε2).
(4.138)

Therefore the approximate invariant solution is

u(t, x) = (1 + 2εx) f(t). (4.139)

Substituting (4.139) into (4.119) we obtain the following ODE

f ′ + 2εxf ′ = 0 (4.140)

where “′” denotes differentiation with respect to J1 = t, and it implies that

f ′ = 0. (4.141)

The solution of equation (4.141) is

f(t) = K1 (4.142)

where K1 is a constant of integration. Hence the approximate invariant solution is

given by

u(t, x) = (1 + 2εx)K1. (4.143)

(b) Invariance under v3 + v5. The approximate invariants for v3 + v5 are determined

by the equations (
x
∂

∂x
+ 2u

∂

∂u

)
(J0) = 0 (4.144)
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and (
x
∂

∂x
+ 2u

∂

∂u

)
(J1) +

∂

∂x
(J0) = 0. (4.145)

Equation (4.144) has two functionally independent solutions J1
0 = t and J2

0 = u/x2.

The simplest solutions of (4.145) are J1
1 = 0 and J2

1 = −2u/x3. Therefore we have

two independent invariants J1 = t and J2 = u/x2−2εu/x3. Thus, the approximate

invariant solution J2 = g(J1) is given by

u

x2
− 2εu

x3
= g(t) (4.146)

which implies that

u(t, x) = x2

(
1− 2ε

x

)−1

g(t)

≈ x2

(
1 +

2ε

x

)
g(t) + o(ε2).

(4.147)

Hence the approximate invariant solution is

u(t, x) = x2

(
1 +

2ε

x

)
g(t). (4.148)

Substituting (4.148) into (4.119) we obtain the following ODE

x2g′ − 6x2g(g + g′) + ε(2xg′ − 2(6x+ 3x2)g(g + g′)) = 0 (4.149)

where “′” denotes differentiation with respect to J1 = t.

(c) Invariance under v3 + v4. The approximate invariants for v3 + v4 are determined

by the equations (
x
∂

∂x
+ 2u

∂

∂u

)
(J0) = 0 (4.150)

and (
x
∂

∂x
+ 2u

∂

∂u

)
(J1) +

∂

∂t
(J0) = 0. (4.151)

Equation (4.150) has two functionally independent solutions J1
0 = t and J2

0 = u/x2.

The simplest solutions of (4.151) are J1
1 = − lnx and J2

1 = 0. Therefore we have

two independent invariants J1 = t − ε lnx and J2 = u/x2. Thus, the approximate

invariant solution J2 = h(J1) is given by

x−2u = h(t− ε lnx). (4.152)
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Hence the approximate invariant solution is

u(t, x) = x2h(t− ε lnx). (4.153)

Substituting (4.153) into (4.119) we obtain the following ODE

6h2 − h′ + 6hh′ + ε(6h2 − hh′ − 2h′
2 − 5hh′′) = 0 (4.154)

where “′” denotes differentiation with respect to J1 = t− ε lnx.

Subsubcase 4.2.2

In this subsubcase we will consider the combinations v2 + v6 and v1 + v6.

(a) Invariance under v2 + v6. The approximate invariants for v2 + v6 are determined

by the equations
∂

∂x
(J0) = 0, (4.155)

and
∂

∂x
(J1) +

(
− ∂

∂t
+ u

∂

∂u

)
(J0) = 0. (4.156)

Equation (4.155) has two functionally independent solutions J1
0 = t and J2

0 = u.

The simplest solutions of (4.156) are J1
1 = x and J2

1 = −xu. Therefore we have

two independent invariants J1 = t + εx and J2 = u− εxu. Thus, the approximate

invariant solution J2 = F (J1) is given by

u− εxu = F (t+ εx) (4.157)

which implies that

u(t, x) = (1− εx)−1 F (t+ εx)

≈ (1 + εx)F (t+ εx) + o(ε2).
(4.158)

Hence the approximate invariant solution is

u(t, x) = (1 + εx)F (t+ εx). (4.159)

Substituting (4.159) into (4.119) we obtain the following ODE

F ′ + εxF ′ = 0 (4.160)
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where “′” denotes differentiation with respect to J1 = t− εx, and it implies that

F ′ = 0. (4.161)

The solution of equation (4.161) is

F = K2 (4.162)

where K2 is a constant of integration. Hence the approximate invariant solution is

given by

u(t, x) = (1 + εx)K2. (4.163)

(b) Invariance under v1 + v6. The approximate invariants for v1 + v6 are determined

by the equations
∂

∂t
(J0) = 0 (4.164)

and
∂

∂t
(J1) +

(
− ∂

∂t
+ u

∂

∂u

)
(J0) = 0. (4.165)

Equation (4.164) has two functionally independent solutions J1
0 = x and J2

0 = u.

The simplest solutions of (4.165) are J1
1 = 0 and J2

1 = −tu. Therefore we have two

independent invariants J1 = x and J2 = u− εtu. Thus, the approximate invariant

solution J2 = G(J1) is given by

u− εtu = G(x) (4.166)

which implies that

u(t, x) = (1− εt)−1G(x)

≈ (1 + εt)G(x) + o(ε2).
(4.167)

Hence the approximate invariant solution is

u(t, x) = (1 + εt)G(x). (4.168)

Substituting (4.168) into (4.119) we obtain the following ODE

G′′ + ε(G′
2

+G′′ + tG′′ +GG′′ −G) = 0 (4.169)

where “′” denotes differentiation with respect to J1 = x.
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4.3 Perturbed pseudo-parabolic PDE: Model IIIb

In this section, for completeness we consider a perturbed pseudo-parabolic PDE (7)

ut = ((uα + εuβ)ux)x, (4.170)

where ε is a small parameter, while α and β are arbitrary constants. Firstly, we perform

approximate symmetry analysis of a general case α 6= β for α, β > 0. Secondly, we

consider particular cases of (4.170) for different values of α and β which arises from the

analysis of the general case. In each case the approximate symmetries are obtained and

then used to perform symmetry reductions and/or construct group approximate invariant

solutions.

4.3.1 Approximate symmetries

The generator of approximate symmetries of (4.170) is

X = X0 + εX1

=

(
ξ0 ∂

∂t
+ τ 0 ∂

∂x
+ η0 ∂

∂u

)
+ ε

(
ξ1 ∂

∂t
+ τ 1 ∂

∂x
+ η1 ∂

∂u

)
(4.171)

if and only if

X [2](ut − ((uα + εuβ)ux)x)
∣∣
(4.170)

= o(ε), (4.172)

or equivalently(
X

[2]
0 (ut − (uαux)x) + ε(X

[2]
1 (ut − (uαux)x) +X

[2]
0 (−(uβux)x))

) ∣∣
(4.170)

= 0. (4.173)

The coefficients ξi, τ i, and ηi (i = 0, 1) are unknown functions of t, x, u and X [2] is the

second prolongation of X. Equation (4.172) is the determining equation for infinitesimal

approximate symmetries.

First step. Calculation of symmetries, X0, of the unperturbed equation:

The symmetry operators X0 of the unperturbed equation (ε = 0)

ut − (uαux)x = 0 (4.174)

are obtained by solving the determining equation for exact symmetries

X
[2]
0 (ut − (uαux)x)

∣∣
(4.174)

= 0, (4.175)
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where X
[2]
0 is the second prolongation of the vector field X0 given by

X
[2]
0 = X0 + ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζxx

∂

∂uxx
. (4.176)

From equation (4.175) we have

(
ζt − uαζxx − 2αuα−1uxζx −

(
α(α− 1)uα−2u2

x + αuα−1uxx
)
η
)∣∣

(4.174)
= 0, (4.177)

where the coefficients ζt, ζx and ζxx are given respectively by equations (1.23), (1.24)

and (1.27). When expanded , equation (4.177) yields an overdetermined system of linear

homogeneous partial differential equations (determining equations) that can be solved

for the coefficients ξ0, τ 0 and η0 of the approximate symmetry operator (4.171) using the

classical Lie symmetry method.

With the aid of YaLie [7] software package, the determining equations become

ξ0
u = 0, (4.178)

τ 0
u = 0, (4.179)

ξ0
x = 0, (4.180)

η0
t − uαη0

xx = 0, (4.181)

α(1− α)uα−2η0 − αuα−1η0
u + 2αuα−1τ 0

x − αuα−1ξ0
t − uαη0

uu = 0, (4.182)

−αuα−1η0 + 2uατ 0
x − uαξ0

t = 0, (4.183)

−2αuα−1η0
x + uατ 0

xx − 2uαη0
xu − τ 0

t = 0, (4.184)

where the subscripts denote partial derivatives with respect to the indicated variable.

From equations (4.178) and (4.180) we have

ξ0 = A(t), (4.185)

where A(t) is an arbitrary function of t. From equation (4.179) we get

τ 0 = B(t, x), (4.186)

where B(t, x) is an arbitrary function of t and x. Substituting equations (4.185) and

(4.186) into equation (4.183) we obtain

η0 =
u(2Bx − At)

α
. (4.187)
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Equation (4.182) is identically satisfied by (4.185), (4.186) and (4.187). Substituting

equation (4.187) into equations (4.181) and (4.184) reduce to the following equations

Att + 2uαBxxx − 2Btx = 0, (4.188)

(4 + 3α)uαBxx + αBt = 0. (4.189)

Separating (4.189) by powers of u we have

Bt = 0 or α = 0 (4.190)

and

Bxx = 0 or 4 + 3α = 0. (4.191)

For α 6= 0,−4/3 we get

B(x) = k1x+ k2, (4.192)

where k1 and k2 are constants of integration. Substituting (4.192) into (4.188) we have

Att = 0 (4.193)

which solves to

A(t) = k3t+ k4, (4.194)

where k3 and k4 are constants of integration. Thus,

X0 = (k3t+ k4)
∂

∂t
+ (k1x+ k2)

∂

∂x
+

(2k1 − k3)u

α

∂

∂u
. (4.195)

Therefore the unperturbed equation (4.174) admits the four-dimensional Lie algebra with

the basis

X1 =
∂

∂t
,

X2 =
∂

∂x
,

X3 = x
∂

∂x
+

2u

α

∂

∂u
,

X4 = t
∂

∂t
− u

α

∂

∂u
.

(4.196)

Second step: We determine the auxiliary function H given by

H =
1

ε
X

[2]
0

(
ut − ((uα + εuβ)ux)x

) ∣∣
(4.170)

, (4.197)
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where X
[2]
0 is the second prolongation of X0 given by

X
[2]
0 = (k3t+ k4)

∂

∂t
+ (k1x+ k2)

∂

∂x
+

(2k1 − k3)u

α

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux

+ζxx
∂

∂uxx
(4.198)

and the coefficients ζ ′s are given by

ζt =

(
2k1 − k3

α
− k3

)
ut, (4.199)

ζx =

(
2k1 − k3

α
− k3

)
ux, (4.200)

ζxx =

(
2k1 − k3

α
− 2k1

)
uxx. (4.201)

Substituting the operator (4.198) into (4.197) and simplifying we obtain the auxiliary

function

H =
(2k1 − k3)(α− β)uβ−1

α
(βu2

x + uuxx). (4.202)

Third step: Now we calculate the operators X1 by solving the inhomogeneous deter-

mining equation for deformations:

X
[2]
1 (ut − (uαux)x)

∣∣
(4.174)

+
(2k1 − k3)(α− β)uβ−1

α
(βu2

x + uuxx) = 0, (4.203)

where X
[2]
1 is the second prolongation of X1. Expansion of (4.203) yields an overdeter-

mined system of linear inhomogeneous partial differential equations that can be solved

for the coefficients ξ1, τ 1, and η1. The expansion of expression

X
[2]
1 (ut − (uαux)x)

∣∣
(4.174)

is the same as that in equation (4.177) with superscript zero replaced by one. Thus, the

determining equations of (4.203) become

ξ1
u = 0, (4.204)

τ 1
u = 0, (4.205)

ξ1
x = 0, (4.206)

η1
t − uαη1

xx = 0, (4.207)

α(1− α)uα−2η1 − αuα−1η1
u + 2αuα−1τ 1

x − αuα−1ξ1
t − uαη1

uu

+
(2k1 − k3)(α− β)βuβ−1

α
= 0, (4.208)

73



−αuα−1η1 + 2uατ 1
x − uαξ1

t +
(2k1 − k3)(α− β)uβ

α
= 0, (4.209)

−2αuα−1η1
x + uατ 1

xx − 2uαη1
xu − τ 1

t = 0, (4.210)

where the subscripts denote partial derivatives with respect to the indicated variable.

From equations (4.204) and (4.206) we have

ξ1 = C(t), (4.211)

where C(t) is an arbitrary function of t. From equation (4.210) we get

τ 1 = D(t, x), (4.212)

where D(t, x) is an arbitrary function of t and x. Substituting equations (4.211) and

(4.212) into equation (4.209) we obtain

η1 =
u(2Dx − Ct)

α
+

(2k1 − k3)(α− β)uβ−α+1

α2
. (4.213)

Substituting equation (4.213) into equations (4.207) and (4.210) reduce to the following

equations

Ctt + 2uαDxxx − 2Dtx = 0, (4.214)

(4 + 3α)uαDxx + αDt = 0. (4.215)

Separating (4.215) by powers of u we have

Dt = 0 or α = 0 (4.216)

and

Dxx = 0 or 4 + 3α = 0. (4.217)

For α 6= 0,−4/3 we get

D(x) = d1x+ d2, (4.218)

where d1 and d2 are constants of integration. Substituting (4.218) into (4.214) we have

Ctt = 0 (4.219)

which solves to

C(t) = d3t+ d4, (4.220)
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where d3 and d4 are constants of integration. Substituting (4.213), (4.218) and (4.220)

into (4.208) we have

(2k1 − k3)(α− β)(β − α + 1)(β − α)uβ−α−1

α2
= 0 (4.221)

which implies that

2k1 = k3 (4.222)

or

β = α− 1 (4.223)

since α 6= β. We now consider the two cases separately including the case α = β.

Subcase 4.3.1. 2k1 = k3.

When 2k1 = k3, we therefore have

η1 =
(2d1 − d3)u

α
. (4.224)

Thus,

X1 = (d3t+ d4)
∂

∂t
+ (d1x+ d2)

∂

∂x
+

(2d1 − d3)u

α

∂

∂u
. (4.225)

Then, the approximate symmetries of (4.170) are obtained from

X = [2k1t+ k4 + ε(d3t+ d4)]
∂

∂t
+ [k1x+ k2 + ε(d1x+ d2)]

∂

∂x

+ε
(2d1 − d3)u

α

∂

∂u
,

(4.226)

and are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = 2t
∂

∂t
+ x

∂

∂x
,

v4 = εv1,

v5 = εv2,

v6 = ε

(
t
∂

∂t
− u

α

∂

∂u

)
,

v7 = ε

(
x
∂

∂x
+

2u

α

∂

∂u

)
.

(4.227)
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Subcase 4.3.2. β = α− 1.

When β = α− 1 we therefore have

η1 =
(2d1 − d3)u

α
+

2k1 − k3

α2
. (4.228)

Thus,

X1 = (d3t+ d4)
∂

∂t
+ (d1x+ d2)

∂

∂x
+

(
(2d1 − d3)u

α
+

2k1 − k3

α2

)
∂

∂u
. (4.229)

Then, the approximate symmetries of (4.170) are obtained from

X = [k3t+ k4 + ε(d3t+ d4)]
∂

∂t
+ [k1x+ k2 + ε(d1x+ d2)]

∂

∂x

+

[
(2k1 − k3)u

α
+ ε

(
(2d1 − d3)u

α
+

2k1 − k3

α2

)]
∂

∂u
,

(4.230)

and are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = t
∂

∂t
−
(
u

α
+

ε

α2

∂

∂u

)
,

v4 = x
∂

∂x
+

(
2u

α
+

2ε

α2

∂

∂u

)
,

v5 = εv1,

v6 = εv2,

v7 = ε

(
t
∂

∂t
− u

α

∂

∂u

)
,

v8 = ε

(
x
∂

∂x
+

2u

α

∂

∂u

)
.

(4.231)

Subcase 4.3.3. α = β.

When α = β equation (4.170) becomes

ut = ((uα + εuα)ux)x (4.232)
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and the approximate symmetries of (4.170) are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = t
∂

∂t
− u

α

∂

∂u
,

v4 = x
∂

∂x
+

2u

α

∂

∂u
,

v5 = εv1,

v6 = εv2,

v7 = εv3,

v8 = εv4.

(4.233)

Subcase 4.3.4. α = −4/3.

When α = −4/3 equation (4.170) becomes

ut = ((u−4/3 + εuβ)ux)x (4.234)

and the approximate symmetries of (4.170) are given by

v1 =
∂

∂t
,

v2 =
∂

∂x
,

v3 = t
∂

∂t
+

3u

4

∂

∂u
,

v4 = x
∂

∂x
− 3u

2

∂

∂u
,

v5 = x2 ∂

∂x
− 3u

∂

∂u
,

v6 = εv1,

v7 = εv2,

v8 = εv3,

v9 = εv4,

v10 = εv5.

(4.235)
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4.4 Conclusion

In this chapter, approximate symmetry analysis of perturbed PDEs was presented. Ap-

proximate symmetries of each submodel were obtained and particular linear combinations

of approximate symmetries used to construct approximate invariant solutions.
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CONCLUSION

In this work, both Lie group analysis and approximate symmetry analysis were em-

ployed to study different submodels of a pseudo-parabolic PDE modelling solvent uptake

in polymeric solids. In chapter two, Lie point symmetries of of the pseudo-parabolic

PDE for power law in diffusion coefficient with constant velocity were obtained. Cor-

responding optimal systems of one-dimensional subalgebras were derived and used to

perform symmetry reductions and construct invariant solutions. In chapter three, Lie

point symmetries of the pseudo-parabolic PDE for law in diffusion coefficient and vis-

cosity were obtained. Optimal systems of one-dimensional subalgebras were derived and

used to perform symmetry reductions and construct group invariant solutions.

In chapter four, approximate symmetries of the perturbed pseudo-parabolic PDE with

diffusion coefficient with a perturbation parameter and constant viscosity were obtained.

Some linear combinations of the approximate symmetries were used to construct approx-

imate invariant solutions.
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