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Abstract— Cloud computing brings flexible and cost effective 

services. However, security concerns plague the cloud. Data 

confidentiality is one of the concerns inhibiting the adoption of 

cloud computing. This concern stems from various cyberattacks 

directed towards gaining unauthorised access to cloud-bound or 

cloud-hosted data. This paper proposes a client-end encryption 

and key management system to curb attacks that targets 

compromising the confidentiality of cloud-hosted data. The 

proposed system uses chaotic atmospheric noise to generate a 

fitness function. The fitness function generates random numbers 

which create encryption keys. The strength of the encryption keys 

is derived from the chaotic and random nature of the atmospheric 

noise. The keys are then used for encrypting cloud-bound data 

using Advanced Encryption Standard (AES-128, 192 and 256), 

Data Encryption Standard (DES), 3-DES, and our novel 

cryptosystem named Cryptor, before it can be sent to the cloud. 

However, encryption bears no significance if the key management 

is flawed. To address the inherent key management problem, the 

solution uses a neural network to learn patterns of an encryption 

key. Once learnt, the key is then discard to thwart possible key 

attacks. The key is reconstructed by the neural network for 

decryption purposes. 
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I. INTRODUCTION 

Cloud computing has gained considerable popularity. This 

is due to the exponential increase in the use of the Internet-

based services e.g. software as a service (SaaS), platform as a 

service (PaaS), infrastructure as a service (IaaS). Cloud 

computing brings attractive benefits. For example, resource 

sharing, storage capacities, pay-per-use model etc. However, 

despite having such advantages, the cloud is plagued with 

security concerns. Among the concerns is data confidentiality 

breaches. 

Quite often, information security practitioners make use of 

encryption systems to achieve data confidentiality guarantees. 

Several encryption systems are used to secure cloud services. 

For example, Data Encryption Standard (DES), its variant 

triple DES, Advanced Encryption Standard (AES), the Rivest, 

Adleman and Shamir (RSA) algorithm and others. However, 

cybercriminals are continually finding new ways of 

compromising the confidentiality of cloud-hosted data and 

services. Cybercriminals continue to develop new tools, 

techniques and procedures (TTPs) to breach existing 

encryption systems and steal cloud-hosted data. Hence, the 

adoption of cloud-based services hinges on getting right the 

issues that relate to data confidentiality [1]. Data 

confidentiality issues mainly arise from the fact that cloud-

based services can be accessed from virtually anywhere, at any 

time, and using any Internet-enabled device. Such convenience 

in terms of accessibility opens gaping vulnerabilities that get 

exploited by various attacks that target compromising the 

confidentiality of cloud-hosted data. For example, inter-VM, 

VM-sprawl and insider attacks exploit vulnerabilities in virtual 

machines and hypervisors to breach the confidentiality of 

cloud-hosted data. Existing cryptographic solutions are 

proving to be insufficient in dealing with these new threats. 

This has created a need for better mechanism to deal with the 

new threats that are specific to the cloud. Therefore, new 

encryption systems are required to provide data confidentiality 

guarantees and to thwart these new cyber-attacks. 

Moreover, due to the emergence of various digital devices 

such as smart phones, tablets, laptops etc., enormous amounts 

of digital content are generated and sent for storage on the 

cloud. Cloud service providers (CSPs) such as Google, 

Dropbox, Microsoft, Apple, Amazon etc., offer individuals, 

small and big organizations cloud storage services for them to 

store their data. This service comes at a fraction of the cost of 

hosting the data in-house. Thus, cloud computing is bulging 

with digital content. The digital content explosion is envisaged 

to increase exponentially in years to come. The increasing use 

of cloud storage services to store digital content calls for secure 

encryption measures to provide strong confidentiality 

guarantees on the data. Therefore, some CSPs already provide 

encryption mechanisms to ensure secure storage services that 

guarantee confidentiality to cloud-hosted data. For example, 

Dropbox uses AES-256 and a transport layer security (TLS) 

protocol to provide data confidentiality for its customers [2]. 

Despite the efforts of some CSPs in trying to implement strong 

encryption to protect cloud-hosted data from any malicious 

attacks, there have been numerous security breaches that have 

resulted in confidential data leakages. For example, the same 

Dropbox which uses AES-256 has experienced a cyber-attack 

in which user credentials were stolen and used to reveal 

customers’ cloud-hosted data [3].  



Furthermore, some CSPs are bound by service level 

agreements (SLAs), regulatory compliance and legal policies 

to provide confidentiality guarantees on cloud-hosted data [4]. 

But still data leakage breaches are widespread and come with 

huge consequences. Surely, there is something wrong with the 

current approach. It appears that most encryption systems are 

implemented on the CSP’s end which indicates that the 

resultant encryption keys are also managed by the CSP. 

However, some CSPs have moved toward encrypting 

customers’ cloud-hosted data and hand the keys back to the 

customers (i.e. the keys to the data are not on the CSPs 

premises). Some CSPs have involved third parties to manage 

encryption keys. All these approaches have been tried and 

tested. However, it must be noted that weak encryption or a 

flawed key management systems often result in confidential 

data leakages which has severe financial implications to the 

customer and the breached CSP. Thus, encryption on the cloud 

requires careful attention and has to be done right in order to 

provide the right levels of confidentiality guarantees to cloud-

hosted data. 

Therefore, this paper addresses data confidentiality issues 

on the cloud from the perspective of strong encryption and 

secure key management. The remainder of this paper is 

structured as follows: section II discusses existing literature. 

Section III introduces the proposed model. Section IV presents 

and discusses the results of the proposed solution. Section V 

concludes the paper and provides future recommendations. 

II. LITERATURE REVIEW 

Various research related to cloud encryption has been 

conducted. In the quest to achieve data confidentiality, 

encryption is cited as the widely-used method [5][6]. 

Neural cryptography is a new technique for providing data 

confidentiality [7]. This technique combines the concepts of 

machine learning and cryptography, using neural networks. In 

their research, [7] proposes artificial intelligence techniques to 

invent cryptosystems to curb eavesdropping. The research 

proposes two artificial neural networks for develop a 

cryptographic algorithm to protect data. The encryption part 

was a success as the neural networks successfully 

communicated securely, avoiding eavesdropping. However, 

the solution requires large memory due to the exponential 

growth of the neural networks. It also takes longer periods to 

exchange a secret key between the two communicating neural 

networks. These issues make the solution inefficient. 

A neural cryptographic scheme is proposed by [8]. This 

scheme is based on mutual machine learning concepts. The 

idea of mutual machine learning is gaining popularity in 

various aspects of neural cryptography. For example, using 

synchronization, the prevalent key distribution problems faced 

by most encryption systems might be solved. The proposed 

scheme uses two feed-forward neural networks (NNs). The 

NNs have discrete and continuous weights. The proposed 

scheme encrypts data successfully. However, the work of [9] 

shows that the solution proposed by [8] is susceptible to 

genetic, geometric and probabilistic attacks. Using genetic 

algorithms, the scheme can be easily defeated by mutating a 

fitness function until a matching encryption key is found. This 

is analogous to a brute-force attack. 

A study conducted by [9] proposes a neural cryptographic 

scheme using information substitution and permutations. This 

two techniques are meant to achieve confusion and diffusion 

when encrypting data. This scheme uses a recursive, modulo-

2 substitution and two feed forward NNs. Communicating NNs 

receive a unique input vector to produce a unique output bit. 

This process is repeated a number of times to generate a secret 

key. This scheme encrypts plaintext through a recursive 

modulo-2 substitution phase to produce ciphertext. This 

ciphertext is then enciphered to produce the final ciphertext, 

using a cipher block chain (CBC) and an exclusive OR (i.e. 

XOR) operation. The CBC and XOR operations are applied on 

vectors with identical weights and intermediate ciphertext 

block lengths. As with most neural network implementations, 

neural cryptographic schemes require large memory as the 

neural network grows exponentially and requires huge 

amounts of training time. 

Homomorphic encryption is one of the methods proposed 

for ensuring data confidentiality. The notion of homomorphic 

encryption was introduced by Rivest, Adleman and 

Dertouzous [10]. Homomorphic encryption is based on the 

ability to perform certain computations, such as addition and 

multiplication on ciphertext, without using a decryption key to 

decrypt the data. This allows third parties such as CSPs, to 

perform limited queries on ciphertext while preserving the 

confidentiality of the data. However, [11] shows that 

homomorphic encryption schemes have vulnerabilities and can 

be broken. In particular, a study by [12] proved that given a 

deterministic, privacy homomorphic scheme can be broken in 

sub-exponential time. This becomes worse in a quantum 

computing space. A study by [13] showed that homomorphic 

scheme with deterministic properties can be broken using 

quantum computations. Furthermore, existing schemes are not 

fully homomorphic as they allow only one operation, either 

addition or multiplication, on a ciphertext. A fully 

homomorphic encryption has been proposed by [14][15]. 

However, fully homomorphic encryption schemes are slow, 

resource intensive and has not been tested for practical 

implementations. 

Another study on encryption, key management and data 

confidentiality on the cloud was conducted by [16]. This 

research proposes a client-end cryptosystem for encrypting 

data prior to uploading it to the cloud. Although the 

cryptosystem achieves data confidentiality, its major downfall 

is on the key management system. The authors propose to 

blend the encryption key with the ciphertext. This becomes 

security by obscurity - a vulnerability as cybercriminals might 

find out that the key is part of the ciphertext. Hence, the 

confidentiality of the data may be compromised.  

A study by [17] uses a light-weight AES-128, a secure hash 

algorithm (SHA-512) and water-marking to provide 

confidentiality of cloud-hosted data. This study also uses the 

Bell & Lapadula model for authorization purposes. The authors 

implement a real-time identification scheme to curb data leaks 

through a cache technique. The technique they implement uses 

a VM cache memory to identify authenticated and authorized 

users. The contents of the VM cache memory are encrypted 

with AES-128 and sent to an authentication server. The 

authentication server decrypts the message header to find the 

user credentials. However, virtual cache memory may not 

uniquely identify cached data due to aliasing. Aliasing means 

that a virtual memory address may be mapped to a different 

physical memory address. Hence, virtual cache memory is 



susceptible to end channel attacks as revealed in [18]. The 

authors show how a novel attack vector can easily exploit 

vulnerabilities of the hypervisor and other software security 

monitors. The attack vector uses aliasing to place incoherent 

copies of physical addresses on a cache memory. Thus, virtual 

indexing is a one-to-many function. Such functions may not be 

desirable where unique identifiers are used, such as in a cloud 

environment. Hence, an unauthorized user might gain access 

to confidential data. 

An approach combining encryption and data fragmentation 

is proposed by [19][20]. Fragmentation ensures that data is 

split into several fragments which can be stored in distributed 

cloud databases provided by CSPs. Fragmentation may be 

implemented either vertically or horizontally across a 

relational database to store data in various data centers. This is 

also very useful for backup purposes. However, efficiency in 

data retrieval may be an expensive process especially if one of 

the sites (i.e. database storing fragments) is inaccessible due to 

network problems as the fragments will not be enough to 

reconstruct the data. 

To ensure confidentiality guarantees, this study advocates 

for client-end encryption. This approach aims to avoid 

confidential data leaks due to intentional or accidental 

incidents. CSPs may also be compelled to provide “back doors” 

for law enforcement agencies to have uninterrupted access and 

surveillance of cloud-hosted data. For example, the widely-

reported case between the Federal Bureau of Investigation 

(FBI) and Apple, the Microsoft court case on stored emails etc., 

have set new standards on future cryptographic systems. 

Testimony to this is the quick move by WhatsApp to develop 

an end-to-end encryption scheme for their instant messaging 

application. 

This paper extends the work of [20], which proposes a 

neural cryptosystem for cloud-bound data. This work shows 

how cloud users can encrypt their confidential data before 

uploading it to the cloud. The cryptosystem proposes a one-

time pad (OTP) in which the data to be encrypted must be of 

equal length to the encryption key. This study [29] further 

proposes the use of a counter propagation neural network for 

key storage and revocation. However, the proposed system is 

not tested against existing encryption solutions to determine its 

efficiency. Hence this paper adopts the techniques of [29] to 

generate encryption keys for DES, 3-DES and AES to have an 

objective analysis of the encryption systems. 

In summary, various researchers have suggested several 

methods of protecting cloud-hosted data through encryption 

and key management. However, existing systems fall short 

when it comes to providing data confidentiality guarantees. 

Existing research suggests solutions requiring high processing 

power and large memory requirements. This becomes a 

problem when considering client-end security. Another issue 

with existing cryptosystems is their increasing reliance on third 

partyKDCs. The idea of KDCs requires a lot of trust as the 

third-party entity can have access to the confidential data. 

Moreover, KDCs are often targeted by cybercriminals. Hence, 

new encryption schemes that provide data confidentiality 

guarantees and secure encryption key storage are needed. 

Therefore, this paper proposes a light-weight chaos-based 

encryption system. It also aims to strengthen existing 

encryption schemes by producing encryption keys from 

chaotic random noise in the quest to have strong keys for DES, 

3-DES and AES. The next section discusses the proposed 

model. 

III. PROPOSED MODEL SOLUTION 

This section introduces the proposed solution which aims to 

fill the gaps identified in the reviewed literature and provide 

confidentiality guarantees through a client-end encryption 

scheme.  Encryption and key management is a big issue, 

especially in a multi-tenant and distributed environment like 

the cloud. The proposed model seeks to address the issue of 

data confidentiality through strong encryption. The proposed 

scheme is based on symmetric key encryption. This means that 

the same key is used to encrypt and decrypt data. Furthermore, 

the proposed scheme is based on evolutionary computing 

concepts. These concepts introduce a paradigm shift in terms 

of conventional approaches to encrypting data associated with 

the Kerckhoff-Shannon principle. The concepts adhere to static 

algorithms and dynamic encryption keys. 

Moreover, evolutionary computing concepts explore how 

encryption algorithms and keys can quite literally be generated 

‘on the fly’. This is done so that a user can be provided with, 

or, better still, individually generate a personalised encryption 

algorithm in addition to a personalized encryption key. 

The model has the following functional requirements. Each 

of these requirements is taken into consideration in the design 

of the proposed model. 

A. Functional requirements 

• Client-end: The system must be able to encrypt cloud 

user’s data before it could be uploaded on the cloud. The 

encryption keys and everything concerning the model 

should be done by the client. The CSP must never gain 

access to the encryption algorithm or keys. 

• Light-weight: The system must be able to encrypt and 

decrypt data on the fly and without requiring a lot of 

computational resources. This is to enable our proposed 

solution to be suitable for devices with minimal 

computing resources like mobile devices. 

• Secure key management – The system must be able to 

manage encryption keys securely and effectively. This 

also must be done on the client end. 

• Self-destruction of keys – The system must be designed 

such that it can discard encryption keys once the 

encryption is complete. 

 

Fig.1 below depicts the architecture of the proposed 

encryption and key management scheme. 

 



The model describes the process of encrypting cloud-bound 

data on the client-end and how encryption keys are managed. 

The process is initiated by generating random noise. The 

noise can be from any source. In this paper, the noise was 

sourced from random.org. The noise is then transmitted into 

the Eureqa cloud-based system through a secured channel 

using transport layer security (TLS). Eureqa implements an 

exhaustive search which mimics the concepts of evolutionary 

computing to generate a non-linear fitness function that fits the 

input noise. Hence, we argue that the fitness function is the best 

approximation of the input noise. The next section outlines the 

process of generating encryption keys from the resultant fitness 

function. 

B. Encryption key generation process 

To generate random encryption keys, the fitness function is 

normalized using random floating point numbers in the range 

[0,1]. This produces a set of random outputs. The outputs are 

randomly picked and converted into a binary stream. The 

minimum length of the binary stream is 56-bits. If the output 

bit stream is less than 56 bits, the process is repeated and the 

random binary outputs are concatenated to form the desired 

length. The key length depends on the encryption algorithm to 

be used i.e. DES, 3-DES, AES and Cryptor. DES and Cryptor 

use a 56-bit encryption key. However, Cryptor can use 

resizable encryption keys. This means Cryptor uses keys of 

variable length, compared to DES which uses 56 bits only. 

Hence, the strength of the encryption keys emanates from 

the random property of the floating-point numbers derived 

from the chaotic and random attributes of the input noise. It is 

on this premise, that the proposed system is believed to achieve 

strong encryption keys which are not reliant on the key length 

but chaos and randomness. The following algorithm 

summarises the encryption process. 

C. Key generation and encryption algorithm 

Algorithm 1: Key generation and encryption 

 

1. Generate random noise 

2. Input random noise into the Eureqa system 

3. Obtain a fitness function 

4. Generate random floating-point numbers between 

[0,1] 

5. Normalize the fitness function with random floats 

6. Convert random outputs to binary to generate random 

encryption keys 

6.1. Pick an encryption key at random 

6.2. Check length of key depending on the encryption 

algorithm to be used 

7. Encrypt plaintext 

8. Send ciphertext and key into the neural network 

9. Neural network learns the key and ciphertext patterns 

10. Neural network outputs ciphertext 

11. Send ciphertxt to the cloud for storage 

12. Discard the encryption key 

 

The key generation phase in the algorithm above is generic 

to all the encryption schemes discussed herein. Step 7 in the 

algorithm is unique to each scheme. For example, Cryptor 

implements the encryption through an exclusive or i.e. XOR 

operation. Thus, the encryption is based on a one-time pad 

implementation. Therefore, the length of the key and the 

plaintext must be equal in order to encrypt data successfully. 

Steps 8-10 describe how the ciphertext and the encryption key 

are processed by the neural network. The ciphertext is used as 

input into a counter propagation neural network (CPNN) 

together with the encryption key. The CPNN is trained to learn 

patterns of the binary ciphertext and encryption key. Once the 

key has been learnt, it is then discarded to avoid getting 

compromised.  

Decryption can only be done by the data owner. This is done 

in such a manner that the CSP or any unauthorized third party 

entities cannot decrypt the data. This provides the user with 

absolute assurance of the confidentiality guarantees of their 

cloud-hosted data. Once the ciphertext has been downloaded 

from the cloud, it is sent into neural network to be processed. 

The neural network uses unsupervised machine learning to 

reconstruct the key, from the ciphertext patterns. Fig.2 below 

presents the decryption model. 

Figure 1: Proposed model solution 



 

 

The output of the neural network is compared with the target 

value set during the training phase by computing the Euclidean 

distances. If the target value matches the ciphertext at each 

instance, the corresponding encryption key (which was used as 

input during encryption) is produced. The key value is 

converted back to binary form. The plaintext is recovered by 

performing the reverse of the encryption process. The 

encryption key is discarded once the decryption process halts. 

The next section discusses the results. 

IV. DISCUSSION OF RESULTS 

The results presented herein compare Cryptor with DES, 3-

DES, AES-128, AES-192 and AES-256. These cryptosystems 

were chosen because they are also symmetric and are widely 

used for data encryption. Hence, they have some similarities 

with Cryptor.  

A cloud infrastructure was set-up in order to test the 

application and practicability of the proposed model solution 

on a live cloud infrastructure. We used OpenNebula 4.12.3 

which comes with a kernel-based virtual machine (KVM) 

hypervisor. OpenNebula does not have an encryption module. 

Thus, the proposed system can be integrated into the cloud 

infrastructure easily to provide a client-end security service to 

cloud users. 

The encryption schemes were used to encrypt a text file of 

167 bytes in size. Fig.3 depicts a table with the overall 

performance of the encryption schemes when encrypting the 

text file. It also shows the CPU and memory use in percentages.  

 

 

 

 

 

Figure 3: Comparison of cryptosystems 

In terms of computing resources such as CPU and memory, 

Cryptor has better results compared to DES and 3-DES. This 

results mean that Cryptor is indeed a light-weight cryptosystem. 

It therefore meets the functional requirements. Thus, the 

cryptosystem can be deployed on computing devices with low 

memory and CPU specifications given that it is designed to be 

a client-end cryptosystem. Most client devices have low 

specifications. For example, mobile devices. Hence, Cryptor 

can be executed from them. 

In terms of encryption and decryption times, Cryptor 

performed better than AES-192 and AES-256. These results 

show that the encryption scheme is indeed efficient and 

achieves its objective. 

Fig. 4 depicts the encryption and decryption times, 

measured in milliseconds for all five encryption schemes. 

 

Figure 2: Decryption model 



 

Figure 4: Encryption vs Decryption times 

  

Cryptor took 126 milliseconds to encrypt the text file. DES 

encrypted the text file in 12 milliseconds. 3-DES encrypted the 

text file in 13 milliseconds. AES-128 took 87 milliseconds, 

AES-192 took 160 milliseconds and AES-256 recorded 149 

milliseconds to encrypt the same text file. In this regard, only 

DES, 3-DES and AES-128 encrypted the text file faster than 

Cryptor. The former encrypts the text file with the least amount 

of time. Cryptor outperformed AES (192 and 256). These 

results were obtained after ten consecutive runs. On average, 

Cryptor performs comparatively better that the other two 

variants of AES (i.e. AES-192 and AES-256). 

V. CONCLUSION AND FUTURE WORK 

The proposed scheme uses chaotic random noise to improve 

the strength of encryption keys. The strength of the encryption 

keys does not rely on the length of the key but the random and 

chaotic nature of the input noise. The encryption keys can be 

used to improve the strength of existing cryptosystems such as 

DES, 3-DES, AES. Overall, it is concluded, based on the 

results, that Cryptor is a lightweight, strong client-end 

encryption scheme. The results make Cryptor a better 

encryption scheme in terms of encryption and decryption times. 
To enforce data confidentiality guarantees, various security 

issues still need to be analysed. As such, future perspectives of 

include: experimenting on encrypting multi-media digital 

content, implement the Cryptor system to have rounds of 

encryption. 
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